TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (404 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141109 times)
  2. FAT32 Library (73901 times)
  3. Network Ethernet Library (58552 times)
  4. USB Device Library (48723 times)
  5. Network WiFi Library (44376 times)
  6. FT800 Library (43976 times)
  7. GSM click (30721 times)
  8. mikroSDK (29478 times)
  9. PID Library (27299 times)
  10. microSD click (27097 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Qi RX Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.9

mikroSDK Library: 2.0.0.0

Category: Wireless Charging

Downloaded: 197 times

Not followed.

License: MIT license  

Qi RX Click is a compact add-on board made for the purpose of wireless power transfer. This board features the PIC16F15313, a general-purpose 8-bit MCU that makes a flexible, low-cost alternative to the wireless charging solutions based on ASICs from Microchip.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Qi RX Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Qi RX Click" changes.

Do you want to report abuse regarding "Qi RX Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Qi RX Click

Qi RX Click is a compact add-on board made for the purpose of wireless power transfer. This board features the PIC16F15313, a general-purpose 8-bit MCU that makes a flexible, low-cost alternative to the wireless charging solutions based on ASICs from Microchip.

qi_rx_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Oct 2021.
  • Type : I2C type

Software Support

We provide a library for the QiRX Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for QiRX Click driver.

Standard key functions :

  • qirx_cfg_setup Config Object Initialization function.

    void qirx_cfg_setup ( qirx_cfg_t *cfg );
  • qirx_init Initialization function.

    err_t qirx_init ( qirx_t *ctx, qirx_cfg_t *cfg );

Example key functions :

  • qirx_read_data Read data function.

    uint16_t qirx_read_data ( qirx_t *ctx );
  • qirx_read_voltage Read voltage function.

    uint16_t qirx_read_voltage ( qirx_t *ctx, uint16_t v_ref );

Example Description

This is an example that demonstrates the use of the Qi RX Click board.

The demo application is composed of two sections :

Application Init

Initalizes I2C driver and makes an initial log.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    qirx_cfg_t qirx_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    qirx_cfg_setup( &qirx_cfg );
    QIRX_MAP_MIKROBUS( qirx_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == qirx_init( &qirx, &qirx_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    log_printf( &logger, "----------------------- \r\n" );
    log_printf( &logger, "      Qi RX Click       \r\n" );
    log_printf( &logger, "----------------------- \r\n" );

    log_info( &logger, " Application Task " );
    log_printf( &logger, "----------------------- \r\n" );
}

Application Task

This example shows the capabilities of the Qi RX Click by measuring voltage of the connected battery. In order to get correct calculations user should change "v_ref" value to his own power supply voltage.


void application_task ( void ) 
{
    voltage = qirx_read_voltage( &qirx, v_ref );
    log_printf( &logger, " Battery voltage: %d mV \r\n", voltage );
    log_printf( &logger, "----------------------- \r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.QiRX

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

LDC 2 Click

0

LDC 2 Click is a compact add-on board that measures inductance change which a conductive target causes when it moves into the inductor's AC magnetic field. This board features the LDC1041, inductance-to-digital converter (LDC) for inductive sensing solutions from Texas Instruments.

[Learn More]

16x9 G click

5

16x9 G click contains a green LED matrix and the IS31FL3731 audio modulated matrix LED driver. The dimension of the LED matrix is 16x9. Each LED can be controlled individually – both for on/off control and light intensity.

[Learn More]

IR distance Click

0

IR distance Click carries Sharp’s GP2Y0A60SZ0F distance measuring sensor, which comprises of an integrated PSD (position sensitive detector), an infrared LED and a signal processing circuit. The measuring range is between 10 and 150 cm. The Click is designed to run on either 3.3V or 5V power supply. It communicates with the target MCU over RST and AN pin on the mikroBUS™ line.

[Learn More]