TOP Contributors

  1. MIKROE (2653 codes)
  2. Alcides Ramos (351 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136706 times)
  2. FAT32 Library (69916 times)
  3. Network Ethernet Library (55929 times)
  4. USB Device Library (46254 times)
  5. Network WiFi Library (41882 times)
  6. FT800 Library (41142 times)
  7. GSM click (28975 times)
  8. PID Library (26407 times)
  9. mikroSDK (26354 times)
  10. microSD click (25351 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

PROFET 2 3A click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: Power Switch

Downloaded: 46 times

Not followed.

License: MIT license  

PROFET 2 Click is a compact add-on board that contains a smart high-side power switch. This board features the BTS70802EPAXUMA1, a dual-channel, high-side power switch with embedded protection and diagnosis feature from Infineon Technologies.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "PROFET 2 3A click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "PROFET 2 3A click" changes.

Do you want to report abuse regarding "PROFET 2 3A click".

  • Information
  • Comments (0)

mikroSDK Library Blog


PROFET 2 3A click

PROFET 2 Click is a compact add-on board that contains a smart high-side power switch. This board features the BTS70802EPAXUMA1, a dual-channel, high-side power switch with embedded protection and diagnosis feature from Infineon Technologies.

profet23a_click.png

click Product page


Click library

  • Author : Luka Filipovic
  • Date : Jun 2021.
  • Type : ADC type

Software Support

We provide a library for the PROFET23A Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for PROFET23A Click driver.

Standard key functions :

  • profet23a_cfg_setup Config Object Initialization function.

    void profet23a_cfg_setup ( profet23a_cfg_t *cfg );
  • profet23a_init Initialization function.

    PROFET23A_RETVAL profet23a_init ( profet23a_t *ctx, profet23a_cfg_t *cfg );
  • profet23a_default_cfg Click Default Configuration function.

    void profet23a_default_cfg ( profet23a_t *ctx );

Example key functions :

  • profet23a_set_mode Set mode device mode for specific channel channel.

    err_t profet23a_set_mode ( profet23a_t *ctx, profet23a_channel_t channel, uint8_t mode );
  • profet23a_read_an_pin_voltage Read AN pin voltage level function.

    err_t profet23a_read_an_pin_voltage ( profet23a_t *ctx, float *data_out );
  • profet23a_set_den Set diagnostic enable pin state.

    void profet23a_set_den ( profet23a_t *ctx, uint8_t state );

Example Description

This example showcases the ability of the PROFET 2 3A Click board. It configures Host MCU for communication and then enables and disables output channel. Besides that, it reads the voltage of IS pin and calculates current on output for the channel 0.

The demo application is composed of two sections :

Application Init

Initialization of the communication modules(ADC and UART) and additional pins for controlling the device.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    profet23a_cfg_t profet23a_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    profet23a_cfg_setup( &profet23a_cfg );
    PROFET23A_MAP_MIKROBUS( profet23a_cfg, MIKROBUS_1 );
    if ( ADC_ERROR == profet23a_init( &profet23a, &profet23a_cfg ) )
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    profet23a_default_cfg ( &profet23a );
    log_info( &logger, " Application Task " );
    Delay_ms ( 1000 );
}

Application Task

On every iteration of the task device switches between DIAGNOSTIC and OFF mode while it reads the voltage of IS pin and with that calculates current on output for channel 0.


void application_task ( void ) 
{
    static uint8_t mode = PROFET23A_DIAGNOSTIC_ON;
    float profet23a_an_voltage = 0;

    err_t error_val = profet23a_set_mode( &profet23a, PROFET23A_CHANNEL_0, mode );

    if ( error_val )
    {
        log_error( &logger, "Channe/Mode" );
    }

    if ( PROFET23A_DIAGNOSTIC_ON == profet23a.mode )
    {
        mode = PROFET23A_MODE_OFF;
        log_printf( &logger, " > Output ON Channel %u in diagnostic mode\r\n", ( uint16_t )profet23a.channel );
        Delay_ms ( 1000 );
    }
    else
    {
        mode = PROFET23A_DIAGNOSTIC_ON;
        log_printf( &logger, " > Output OFF\r\n" );
    }

    if ( profet23a_read_an_pin_voltage ( &profet23a, &profet23a_an_voltage ) != ADC_ERROR )
    {
        log_printf( &logger, " > IS Voltage \t~ %.3f[V]\r\n", profet23a_an_voltage );

        float current = profet23a_an_voltage * profet23a.kilis / profet23a.rsens;
        log_printf( &logger, " > OUT Current \t~ %.3f[A]\r\n", current );
    }  

    log_printf( &logger, "*******************************************\r\n" );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

Note

Formula for calculating current on load: I_load = voltage(IS) x kILIS(1800) / rsens(1.2 kΩ)

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.PROFET23A

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

EEPROM 5 click

0

EEPROM 5 Click is a compact add-on board that contains the highest-density memory solution. This board features the M95M04, the 4Mbit electrically erasable programmable memory organized as 524288 x 8 bits accessed through the SPI interface from STMicroelectronics.

[Learn More]

Buck 15 click

0

Buck 15 Click is a compact add-on board for precision voltage regulation across various applications. This board features the TPS62903, a synchronous step-down DC/DC converter from Texas Instruments. It is known for its adaptability, rapid transient response, and high output voltage accuracy of ±1.5% across all operating temperatures. Featuring the innovative DCS-control topology, it supports a wide input voltage range of 3V to 17V, an adjustable output voltage from 0.4V to 5V, and currents up to 3A. This Click board™ can be used in a variety of automotive applications, such as the ADAS, body electronics and lighting, infotainment and cluster, hybrid, electric, and powertrain systems, any application with a 12V input voltage or a 1-4 cell lithium battery pack, and more.

[Learn More]

I2C MUX 4 click

0

I2C MUX 4 Click is a compact add-on board that contains a dual bidirectional translating switch dedicated for applications with I2C slave address conflicts.

[Learn More]