We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.14
mikroSDK Library: 2.0.0.0
Category: Sub-1 GHz Transceivers
Downloaded: 172 times
Not followed.
License: MIT license
The clicks will enable you to add a low-power consumption radio transceiver at 433 MHz frequency. ccRF 3 Click is designed to run on a 3.3V power supply. It communicates with the target microcontroller over SPI interface.
Do you want to subscribe in order to receive notifications regarding "ccRF 3 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "ccRF 3 Click" changes.
Do you want to report abuse regarding "ccRF 3 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4819_ccrf_3_click.zip [510.69KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
The clicks will enable you to add a low-power consumption radio transceiver at 433 MHz frequency. ccRF 3 Click is designed to run on a 3.3V power supply. It communicates with the target microcontroller over SPI interface.
We provide a library for the ccRF3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for ccRF3 Click driver.
ccrf3_cfg_setup
Config Object Initialization function.
void ccrf3_cfg_setup ( ccrf3_cfg_t *cfg );
ccrf3_init
Initialization function.
err_t ccrf3_init ( ccrf3_t *ctx, ccrf3_cfg_t *cfg );
ccrf3_default_cfg
Click Default Configuration function.
err_t ccrf3_default_cfg ( ccrf3_t *ctx );
ccrf3_cmd_strobe
Set command strobe function.
uint8_t ccrf3_cmd_strobe ( ccrf3_t *ctx, uint8_t cmd )
ccrf3_send_tx_data
Send TX data function.
void ccrf3_send_tx_data ( ccrf3_t *ctx, uint8_t *tx_data, uint8_t n_bytes );
ccrf3_receive_rx_data
Receive RX data function.
uint8_t ccrf3_receive_rx_data ( ccrf3_t *ctx, uint8_t *rx_data );
This example demonstrates the use of ccRF 3 Click board.
The demo application is composed of two sections :
Initializes the driver, performs the default configuration and enables the selected mode.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
ccrf3_cfg_t ccrf3_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_printf( &logger, " Application Init \r\n" );
// Click initialization.
ccrf3_cfg_setup( &ccrf3_cfg );
CCRF3_MAP_MIKROBUS( ccrf3_cfg, MIKROBUS_1 );
if ( SPI_MASTER_ERROR == ccrf3_init( &ccrf3, &ccrf3_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
log_printf( &logger, "----------------------\r\n" );
log_printf( &logger, " Hardware reset\r\n" );
ccrf3_hw_reset( &ccrf3 );
Delay_ms ( 1000 );
if ( CCRF3_ERROR == ccrf3_default_cfg ( &ccrf3 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_printf( &logger, "----------------------\r\n" );
#ifdef DEMO_APP_TRANSMITTER
ccrf3_set_tx_mode( &ccrf3 );
log_printf( &logger, " Transmitter mode\r\n" );
#else
ccrf3_set_rx_mode( &ccrf3 );
log_printf( &logger, " Receiver mode\r\n" );
#endif
log_printf( &logger, "----------------------\r\n" );
Delay_ms ( 100 );
log_printf( &logger, " Application Task \r\n" );
log_printf( &logger, "----------------------\r\n" );
}
Depending on the selected mode, it reads the received data or sends the desired message every 2 seconds. All data is being logged on the USB UART where you can track their changes.
void application_task ( void )
{
#ifdef DEMO_APP_TRANSMITTER
ccrf3_send_tx_data( &ccrf3, TEXT_TO_SEND, strlen( TEXT_TO_SEND ) );
log_printf( &logger, " Sent message: MikroE\r\n" );
log_printf( &logger, " Packet number: %u\r\n", ccrf3.packet_counter );
log_printf( &logger, "----------------------\r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
#else
uint8_t num_bytes = ccrf3_receive_rx_data( &ccrf3, &rx_buffer[ 0 ] );
if ( num_bytes )
{
log_printf( &logger, " Received message: " );
for ( uint8_t cnt = 3; cnt < rx_buffer[ 0 ]; cnt++ )
{
log_printf( &logger, "%c", rx_buffer[ cnt ] );
}
log_printf( &logger, " Packet number: %u", ccrf3.packet_counter );
log_printf( &logger, "\r\n----------------------\r\n" );
}
#endif
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.