TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (385 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139845 times)
  2. FAT32 Library (72209 times)
  3. Network Ethernet Library (57392 times)
  4. USB Device Library (47740 times)
  5. Network WiFi Library (43364 times)
  6. FT800 Library (42700 times)
  7. GSM click (29980 times)
  8. mikroSDK (28440 times)
  9. PID Library (26989 times)
  10. microSD click (26398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Multi Stepper TB67S102 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.10

mikroSDK Library: 2.0.0.0

Category: Stepper

Downloaded: 161 times

Not followed.

License: MIT license  

Multi Stepper Click is a compact add-on board that contains a bipolar stepper motor driver. This board features the TB67S102AFNG, CLOCK-in controlled bipolar stepping motor driver from Toshiba Semiconductor. It supports a PWM constant-current control drive and allows full-, half-, and quarter-step operation for less motor noise and smoother control. It has a wide operating voltage range of 10V to 47V with an output current capacity of 2.8A in addition to several built-in error detection circuits.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Multi Stepper TB67S102 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Multi Stepper TB67S102 Click" changes.

Do you want to report abuse regarding "Multi Stepper TB67S102 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Multi Stepper TB67S102 Click

Multi Stepper Click is a compact add-on board that contains a bipolar stepper motor driver. This board features the TB67S102AFNG, CLOCK-in controlled bipolar stepping motor driver from Toshiba Semiconductor. It supports a PWM constant-current control drive and allows full-, half-, and quarter-step operation for less motor noise and smoother control. It has a wide operating voltage range of 10V to 47V with an output current capacity of 2.8A in addition to several built-in error detection circuits.

multisteppertb67s102_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Feb 2022.
  • Type : I2C type

Software Support

We provide a library for the Multi Stepper TB67S102 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Multi Stepper TB67S102 Click driver.

Standard key functions :

  • multisteppertb67s102_cfg_setup Config Object Initialization function.

    void multisteppertb67s102_cfg_setup ( multisteppertb67s102_cfg_t *cfg );
  • multisteppertb67s102_init Initialization function.

    err_t multisteppertb67s102_init ( multisteppertb67s102_t *ctx, multisteppertb67s102_cfg_t *cfg );
  • multisteppertb67s102_default_cfg Click Default Configuration function.

    err_t multisteppertb67s102_default_cfg ( multisteppertb67s102_t *ctx );

Example key functions :

  • multisteppertb67s102_set_step_mode This function sets the step mode resolution settings.

    err_t multisteppertb67s102_set_step_mode ( multisteppertb67s102_t *ctx, uint8_t mode );
  • multisteppertb67s102_drive_motor This function drives the motor for the specific number of steps at the selected speed.

    void multisteppertb67s102_drive_motor ( multisteppertb67s102_t *ctx, uint32_t steps, uint8_t speed );
  • multisteppertb67s102_set_direction This function sets the motor direction by setting the AN pin logic state.

    void multisteppertb67s102_set_direction ( multisteppertb67s102_t *ctx, uint8_t dir );

Example Description

This example demonstrates the use of the Multi Stepper TB67S102 Click board by driving the motor in both directions for a desired number of steps.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    multisteppertb67s102_cfg_t multisteppertb67s102_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    multisteppertb67s102_cfg_setup( &multisteppertb67s102_cfg );
    MULTISTEPPERTB67S102_MAP_MIKROBUS( multisteppertb67s102_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == multisteppertb67s102_init( &multisteppertb67s102, &multisteppertb67s102_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( MULTISTEPPERTB67S102_ERROR == multisteppertb67s102_default_cfg ( &multisteppertb67s102 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Drives the motor clockwise for 200 steps and then counter-clockiwse for 100 steps with 2 seconds delay before changing the direction. Each step will be logged on the USB UART where you can track the program flow.

void application_task ( void )
{
    log_printf ( &logger, " Move 200 steps clockwise \r\n\n" );
    multisteppertb67s102_set_direction ( &multisteppertb67s102, MULTISTEPPERTB67S102_DIR_CW );
    multisteppertb67s102_drive_motor ( &multisteppertb67s102, 200, MULTISTEPPERTB67S102_SPEED_FAST );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf ( &logger, " Move 100 steps counter-clockwise \r\n\n" );
    multisteppertb67s102_set_direction ( &multisteppertb67s102, MULTISTEPPERTB67S102_DIR_CCW );
    multisteppertb67s102_drive_motor ( &multisteppertb67s102, 100, MULTISTEPPERTB67S102_SPEED_FAST );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.MultiStepperTB67S102

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Silent Step 2 Click

0

Silent Step 2 Click is a compact add-on board that allows extremely smooth and silent operation of the connected motor. This board features the TMC2130, a high-performance two-phase stepper motor driver from Analog Devices. The driver uses an external motor power supply of 4.75 up to 43V to power a 2-phase stepper motor up to 2A coil current (2.5A peak).

[Learn More]

TouchKey 3 Click

0

There are many kinds of touch sensors on the market, but every one of them has some unique features that make it stand out from the crowd. TouchKey 3 Click is equipped with seven advanced capacitive sensors, based on the proprietary QTouch® technology. Besides quite a large number of QTouch® capacitive sensor channels, TouchKey 3 Click also offers some additional features, such as the Adjacent Key Suppression (AKS®), a technology that ensures correct button press, even when the touch sensing pads are placed close to each other.

[Learn More]

RTC Demo

0

The application demonstrates RTC SDK functionality.

[Learn More]