TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139559 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57254 times)
  4. USB Device Library (47607 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42551 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26930 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

EEPROM 8 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.9

mikroSDK Library: 2.0.0.0

Category: EEPROM

Downloaded: 125 times

Not followed.

License: MIT license  

EEPROM 8 Click is a compact add-on board that contains a highly reliable nonvolatile memory solution. This board features the CAV24C512, a 512-Kb electrically erasable programmable memory with enhanced hardware write protection for entire memory from ON Semiconductor. Internally organized as 65,536 words of 8 bits each, the CAV24C512 comes up with the compatible I2C serial interface. The CAV24C512 combines unprecedented data storage with excellent energy efficiency. It lasts one million full-memory read/write/erase cycles with more than 100 years of data retention.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "EEPROM 8 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "EEPROM 8 Click" changes.

Do you want to report abuse regarding "EEPROM 8 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


EEPROM 8 Click

EEPROM 8 Click is a compact add-on board that contains a highly reliable nonvolatile memory solution. This board features the CAV24C512, a 512-Kb electrically erasable programmable memory with enhanced hardware write protection for entire memory from ON Semiconductor. Internally organized as 65,536 words of 8 bits each, the CAV24C512 comes up with the compatible I2C serial interface. The CAV24C512 combines unprecedented data storage with excellent energy efficiency. It lasts one million full-memory read/write/erase cycles with more than 100 years of data retention.

eeprom8_click.png

Click Product page


Click library

  • Author : Stefan Popovic
  • Date : Mar 2022.
  • Type : I2C type

Software Support

We provide a library for the EEPROM 8 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for EEPROM 8 Click driver.

Standard key functions :

  • eeprom8_cfg_setup Config Object Initialization function.

    void eeprom8_cfg_setup ( eeprom8_cfg_t *cfg );
  • eeprom8_init Initialization function.

    err_t eeprom8_init ( eeprom8_t *ctx, eeprom8_cfg_t *cfg );

Example key functions :

  • eeprom8_write_page This function writes up to 128 bytes of data starting from the selected register.

    err_t eeprom8_write_page( eeprom8_t *ctx, uint16_t reg_addr, uint8_t *data_in );
  • eeprom8_read_random_byte This function reads one byte data from the desired register.

    err_t eeprom8_read_random_byte( eeprom8_t *ctx, uint16_t reg_addr, uint8_t *data_out );
  • eeprom8_read_sequential This function reads the desired number of bytes starting from the selected register.

    err_t eeprom8_read_sequential( eeprom8_t *ctx, uint16_t reg_addr, uint16_t n_bytes, uint8_t *data_out );

Example Description

This example demonstrates the use of EEPROM 8 Click board by writing specified data to the memory and reading it back.

The demo application is composed of two sections :

Application Init

Initializes the driver and USB UART logging.


void application_init ( void ) 
{
    eeprom8_cfg_t eeprom8_cfg;  /**< Click config object. */
    log_cfg_t log_cfg;          /**< Logger config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    //  Click initialization.
    eeprom8_cfg_setup( &eeprom8_cfg );
    EEPROM8_MAP_MIKROBUS( eeprom8_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == eeprom8_init( &eeprom8, &eeprom8_cfg ) )
    {
        log_error( &logger, " Communication Init " );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Task writes a desired number of data bytes to the EEPROM 8 memory and verifies that it is written correctly by reading from the same memory location and in case of successful read, displays the memory content on the USB UART. This is done in two passes.


void application_task ( void ) 
{
    // Reset variables
    cnt = 0;
    memset( test_read_buffer, 0, sizeof ( test_read_buffer ) );
    addr_offset = TEST_MEM_LOCATION;

    // Initiate first pass 
    //  filling the eeprom addresses with zeros 
    if( EEPROM8_ERROR == run_first_pass( &eeprom8, test_write_buffer, test_read_buffer ) )
    {
        log_error( &logger, " First Pass Failed " );
    }

    // Initiate second pass 
    //  filling the eeprom addresses with values following arithmetic sequence with difference of 1 
    if( EEPROM8_ERROR == run_second_pass( &eeprom8, test_write_buffer, test_read_buffer ) )
    {
        log_error( &logger, " Second Pass Failed " );
    }

    log_printf( &logger, " \r\nInitiating new iteration\r\n " );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.EEPROM8

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Headphone AMP 3 Click

0

Headphone AMP 3 Click is a compact add-on board that contains a stereo headphone amplifier. This board features the INA1620, a high-fidelity audio operational amplifier with integrated thin-film resistors and EMI filters from Texas Instruments. Over its dual amplifiers, it achieves a very low noise density and drives a 32Ω load at 150mW of output power.

[Learn More]

DC Motor 25 Click

0

DC Motor 25 Click is a compact add-on board with a brushed DC motor driver. This board features the A3908, a low-voltage bidirectional DC motor driver from Allegro Microsystems. The A3908 is rated for an operating voltage range compatible with mikroBUS™ power rails and output currents up to 500mA. The unique output full-bridge incorporates source-side linear operation to allow a constant voltage across the motor coil. Logic input pins are provided to control the motor direction of rotation, brake, and standby modes. It also has complete protection capabilities supporting robust and reliable operation.

[Learn More]

SHT AN Click

0

SHT AN Click is a sensorics based add on board which can be used for measuring humidity and temperature. It features fully calibrated, linearized and temperature compensated SHT31-ARP-B sensor with analog output.

[Learn More]