TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142090 times)
  2. FAT32 Library (75349 times)
  3. Network Ethernet Library (59521 times)
  4. USB Device Library (49540 times)
  5. Network WiFi Library (45327 times)
  6. FT800 Library (44956 times)
  7. GSM click (31459 times)
  8. mikroSDK (30492 times)
  9. microSD click (27821 times)
  10. PID Library (27628 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Heart Rate 11 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Biometrics

Downloaded: 356 times

Not followed.

License: MIT license  

Heart Rate 11 Click is a compact add-on board suitable for heart rate monitoring applications. This board features the OB1203, a multi-channel light sensor (LS/CS), a proximity sensor (PS), and a photoplethysmography sensor (PPG) from Renesas. It can be configured as an ambient light sensor to measure ambient light similar to the human eye experience or as an RGB color sensor. The OB1203 establishes communication to and from the module entirely through a standard I2C compatible interface and has a fully integrated biosensor for reflective photoplethysmography.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Heart Rate 11 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Heart Rate 11 Click" changes.

Do you want to report abuse regarding "Heart Rate 11 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Heart Rate 11 Click

Heart Rate 11 Click is a compact add-on board suitable for heart rate monitoring applications. This board features the OB1203, a multi-channel light sensor (LS/CS), a proximity sensor (PS), and a photoplethysmography sensor (PPG) from Renesas. It can be configured as an ambient light sensor to measure ambient light similar to the human eye experience or as an RGB color sensor. The OB1203 establishes communication to and from the module entirely through a standard I2C compatible interface and has a fully integrated biosensor for reflective photoplethysmography.

heartrate11_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Apr 2022.
  • Type : I2C type

Software Support

We provide a library for the Heart Rate 11 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Heart Rate 11 Click driver.

Standard key functions :

  • heartrate11_cfg_setup Config Object Initialization function.

    void heartrate11_cfg_setup ( heartrate11_cfg_t *cfg );
  • heartrate11_init Initialization function.

    err_t heartrate11_init ( heartrate11_t *ctx, heartrate11_cfg_t *cfg );
  • heartrate11_default_cfg Click Default Configuration function.

    err_t heartrate11_default_cfg ( heartrate11_t *ctx );

Example key functions :

  • heartrate11_get_int_pin This function returns the INT pin logic state.

    uint8_t heartrate11_get_int_pin ( heartrate11_t *ctx );
  • heartrate11_set_led_current This function sets the maximal current of the selected LED.

    err_t heartrate11_set_led_current ( heartrate11_t *ctx, uint8_t led, float current );
  • heartrate11_read_fifo This function reads a 24-bit data from the FIFO.

    err_t heartrate11_read_fifo ( heartrate11_t *ctx, uint32_t *fifo_data );

Example Description

This example demonstrates the use of Heart Rate 11 Click board by reading and displaying the PPG1 (HR) values which can be visualized on the SerialPlot application.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration for heart rate measurement.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    heartrate11_cfg_t heartrate11_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    heartrate11_cfg_setup( &heartrate11_cfg );
    HEARTRATE11_MAP_MIKROBUS( heartrate11_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == heartrate11_init( &heartrate11, &heartrate11_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( HEARTRATE11_ERROR == heartrate11_default_cfg ( &heartrate11 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Waits for the data ready interrupt, then reads the values of PPG from FIFO and displays it on the USB UART (SerialPlot) every 32ms approximately.

void application_task ( void )
{
    // Wait for the data ready interrupt indication
    while ( heartrate11_get_int_pin ( &heartrate11 ) );

    uint32_t ppg;
    if ( HEARTRATE11_OK == heartrate11_read_fifo ( &heartrate11, &ppg ) )
    {
        log_printf ( &logger, "%lu\r\n", ppg );
    }
}

Note

We recommend using the SerialPlot tool for data visualizing.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.HeartRate11

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

LBAND RTK Click

0

LBAND RTK Click is a compact add-on board that provides global and easy access to satellite L-Band GNSS corrections. This board features the NEO-D9S-00B, an professional-grade satellite data receiver for L-band correction broadcast from u-blox. Operating in a frequency range from 1525MHz to 1559MHz, the NEO-D9S-00B decodes the satellite transmission and outputs a correction stream, enabling a high-precision GNSS receiver to reach accuracies down to centimeter level. It can also select the GNSS correction data delivery channel alongside advanced security features such as signature and anti-jamming.

[Learn More]

EXPAND 7 click

5

EXPAND 7 Click is a compact add-on board that contains a multi-port I/O expander with bi-directional input/outputs or PWM outputs. This board features the CY8C9540A, 40-bit I/O port expander with EEPROM and 8 independently configurable 8-bit PWM outputs from Cypress Semiconductor.

[Learn More]

Expand 2 click

6

Expand 2 click is an accessory board in mikroBUS form factor. It includes a 16-bit I/O expander MCP23017 with SPI clock speeds up to 10 MHz for higher throughput applications. Three HARDWARE ADDRESS SEL jumpers allow you to configure board address and connect up to eight devices on the bus.

[Learn More]