TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141697 times)
  2. FAT32 Library (74777 times)
  3. Network Ethernet Library (59218 times)
  4. USB Device Library (49226 times)
  5. Network WiFi Library (44999 times)
  6. FT800 Library (44536 times)
  7. GSM click (31200 times)
  8. mikroSDK (30103 times)
  9. microSD click (27586 times)
  10. PID Library (27540 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

VREG 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Buck

Downloaded: 347 times

Not followed.

License: MIT license  

VREG 2 Click is a voltage regulator Click, with outstanding performances.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "VREG 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "VREG 2 Click" changes.

Do you want to report abuse regarding "VREG 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


VREG 2 Click

VREG 2 Click is a voltage regulator Click, with outstanding performances.

vreg2_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jun 2023.
  • Type : PWM type

Software Support

We provide a library for the Vreg2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Vreg2 Click driver.

Standard key functions :

  • vreg2_cfg_setup Config Object Initialization function.

    void vreg2_cfg_setup ( vreg2_cfg_t *cfg ); 
  • vreg2_init Initialization function.

    err_t vreg2_init ( vreg2_t *ctx, vreg2_cfg_t *cfg );
  • vreg2_default_cfg Click Default Configuration function.

    err_t vreg2_default_cfg ( vreg2_t *ctx );

Example key functions :

  • vreg2_set_duty_cycle This function sets the PWM duty cycle in percentages ( Range[ 0..1 ] ).

    err_t vreg2_set_duty_cycle ( vreg2_t *ctx, float duty_cycle );
  • vreg2_pwm_start This function starts the PWM module output.

    err_t vreg2_pwm_start ( vreg2_t *ctx );
  • vreg2_pwm_stop This function stops the PWM module output.

    err_t vreg2_pwm_stop ( vreg2_t *ctx );

Examples Description

This example demonstrates the use of the VREG 2 Click board by changing the voltage output every 5 seconds.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    vreg2_cfg_t vreg2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    vreg2_cfg_setup( &vreg2_cfg );
    VREG2_MAP_MIKROBUS( vreg2_cfg, MIKROBUS_1 );
    if ( PWM_ERROR == vreg2_init( &vreg2, &vreg2_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( VREG2_ERROR == vreg2_default_cfg ( &vreg2 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Controls the voltage output by changing the PWM duty cycle every 5 seconds. The duty cycle ranges from 10% to 50%. Each step will be logged on the USB UART where you can track the program flow.


void application_task ( void )
{
    static int8_t duty_pct = 10;
    static int8_t duty_step = 10;
    if ( VREG2_OK == vreg2_set_duty_cycle ( &vreg2, ( float ) duty_pct / 100 ) )
    {
        log_printf( &logger, "\r\n Duty: %u%%\r\n", ( uint16_t ) duty_pct );
    }
    duty_pct += duty_step;
    if ( ( duty_pct > 50 ) || ( duty_pct < 10 ) ) 
    {
        duty_step = -duty_step;
        duty_pct += ( duty_step * 2 );
    }
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Vreg2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

3D Hall 7 click

5

3D HALL 7 click is a very accurate, magnetic field sensing Click board, used to measure the intensity of the magnetic field across three perpendicular axes.

[Learn More]

LED Driver 19 Click

0

LED Driver 19 Click is a compact add-on board that simplifies the control of multiple LEDs. This board features the LED1202, a 12-channel low quiescent current LED driver from STMicroelectronics. It can output 5V, and each channel can provide up to 20mA with a headroom voltage of typically 350mW.

[Learn More]

Current 9 Click

0

Current 9 Click is a compact add-on board providing a precise and accurate current sensing solution. This board features the CT415-HSN830DR, high-bandwidth and ultra-low-noise XtremeSense® TMR current sensor designed for the current range up to 30A from Crocus Technology. This sensor also features an integrated current-carrying conductor which handles rated current and generates a current measurement as a linear analog output voltage, accomplishing a total output error of about ±1% full-scale. After that, the user is allowed to process the output voltage in analog or digital form.

[Learn More]