TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139251 times)
  2. FAT32 Library (71749 times)
  3. Network Ethernet Library (57120 times)
  4. USB Device Library (47430 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42403 times)
  7. GSM click (29835 times)
  8. mikroSDK (28077 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

VREG 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Buck

Downloaded: 212 times

Not followed.

License: MIT license  

VREG 2 Click is a voltage regulator Click, with outstanding performances.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "VREG 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "VREG 2 Click" changes.

Do you want to report abuse regarding "VREG 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


VREG 2 Click

VREG 2 Click is a voltage regulator Click, with outstanding performances.

vreg2_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jun 2023.
  • Type : PWM type

Software Support

We provide a library for the Vreg2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Vreg2 Click driver.

Standard key functions :

  • vreg2_cfg_setup Config Object Initialization function.

    void vreg2_cfg_setup ( vreg2_cfg_t *cfg ); 
  • vreg2_init Initialization function.

    err_t vreg2_init ( vreg2_t *ctx, vreg2_cfg_t *cfg );
  • vreg2_default_cfg Click Default Configuration function.

    err_t vreg2_default_cfg ( vreg2_t *ctx );

Example key functions :

  • vreg2_set_duty_cycle This function sets the PWM duty cycle in percentages ( Range[ 0..1 ] ).

    err_t vreg2_set_duty_cycle ( vreg2_t *ctx, float duty_cycle );
  • vreg2_pwm_start This function starts the PWM module output.

    err_t vreg2_pwm_start ( vreg2_t *ctx );
  • vreg2_pwm_stop This function stops the PWM module output.

    err_t vreg2_pwm_stop ( vreg2_t *ctx );

Examples Description

This example demonstrates the use of the VREG 2 Click board by changing the voltage output every 5 seconds.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    vreg2_cfg_t vreg2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    vreg2_cfg_setup( &vreg2_cfg );
    VREG2_MAP_MIKROBUS( vreg2_cfg, MIKROBUS_1 );
    if ( PWM_ERROR == vreg2_init( &vreg2, &vreg2_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( VREG2_ERROR == vreg2_default_cfg ( &vreg2 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Controls the voltage output by changing the PWM duty cycle every 5 seconds. The duty cycle ranges from 10% to 50%. Each step will be logged on the USB UART where you can track the program flow.


void application_task ( void )
{
    static int8_t duty_pct = 10;
    static int8_t duty_step = 10;
    if ( VREG2_OK == vreg2_set_duty_cycle ( &vreg2, ( float ) duty_pct / 100 ) )
    {
        log_printf( &logger, "\r\n Duty: %u%%\r\n", ( uint16_t ) duty_pct );
    }
    duty_pct += duty_step;
    if ( ( duty_pct > 50 ) || ( duty_pct < 10 ) ) 
    {
        duty_step = -duty_step;
        duty_pct += ( duty_step * 2 );
    }
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Vreg2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Mikromedia+ for PIC32MX7 - RF Communication Example

5

This is demonstration project how Mikromedia+ for PIC32MX7 communicates over RF. Data is send over simple 'led protocol' (1 byte command). Development board for PIC32 with an add-on board nRF Click is used as a receiver device.

[Learn More]

OLED W click

5

OLED W click carries a 96 x 39px blue monochrome passive matrix OLED display. The display is bright, has a wide viewing angle and low power consumption. To drive the display, OLED B click features an SSD1306 controller.

[Learn More]

H-Bridge Driver 2 Click

0

H-Bridge Driver 2 Click is a compact add-on board that contains an H-bridge gate driver, also known as a full-bridge pre-driver. This board features the NCV7535, a monolithic H−bridge pre-driver for a DC motor with an enhanced feature set, useful in automotive systems from ON Semiconductor. The gate driver channels are independently controlled by a 24-bit SPI interface, allowing this Click board™ to be optionally configured in a single or dual H-bridge mode. It has a wide operating voltage range from 6V to 18V with built-in protection features against short-circuit, under/over voltage, overcurrent, and overtemperature conditions. This Click board™ is suitable to drive external MOSFETs, thus providing control of a DC-motor.

[Learn More]