TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141174 times)
  2. FAT32 Library (73984 times)
  3. Network Ethernet Library (58601 times)
  4. USB Device Library (48756 times)
  5. Network WiFi Library (44452 times)
  6. FT800 Library (44025 times)
  7. GSM click (30784 times)
  8. mikroSDK (29510 times)
  9. PID Library (27329 times)
  10. microSD click (27188 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

VREG 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Buck

Downloaded: 300 times

Not followed.

License: MIT license  

VREG 2 Click is a voltage regulator Click, with outstanding performances.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "VREG 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "VREG 2 Click" changes.

Do you want to report abuse regarding "VREG 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


VREG 2 Click

VREG 2 Click is a voltage regulator Click, with outstanding performances.

vreg2_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jun 2023.
  • Type : PWM type

Software Support

We provide a library for the Vreg2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Vreg2 Click driver.

Standard key functions :

  • vreg2_cfg_setup Config Object Initialization function.

    void vreg2_cfg_setup ( vreg2_cfg_t *cfg ); 
  • vreg2_init Initialization function.

    err_t vreg2_init ( vreg2_t *ctx, vreg2_cfg_t *cfg );
  • vreg2_default_cfg Click Default Configuration function.

    err_t vreg2_default_cfg ( vreg2_t *ctx );

Example key functions :

  • vreg2_set_duty_cycle This function sets the PWM duty cycle in percentages ( Range[ 0..1 ] ).

    err_t vreg2_set_duty_cycle ( vreg2_t *ctx, float duty_cycle );
  • vreg2_pwm_start This function starts the PWM module output.

    err_t vreg2_pwm_start ( vreg2_t *ctx );
  • vreg2_pwm_stop This function stops the PWM module output.

    err_t vreg2_pwm_stop ( vreg2_t *ctx );

Examples Description

This example demonstrates the use of the VREG 2 Click board by changing the voltage output every 5 seconds.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    vreg2_cfg_t vreg2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    vreg2_cfg_setup( &vreg2_cfg );
    VREG2_MAP_MIKROBUS( vreg2_cfg, MIKROBUS_1 );
    if ( PWM_ERROR == vreg2_init( &vreg2, &vreg2_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( VREG2_ERROR == vreg2_default_cfg ( &vreg2 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Controls the voltage output by changing the PWM duty cycle every 5 seconds. The duty cycle ranges from 10% to 50%. Each step will be logged on the USB UART where you can track the program flow.


void application_task ( void )
{
    static int8_t duty_pct = 10;
    static int8_t duty_step = 10;
    if ( VREG2_OK == vreg2_set_duty_cycle ( &vreg2, ( float ) duty_pct / 100 ) )
    {
        log_printf( &logger, "\r\n Duty: %u%%\r\n", ( uint16_t ) duty_pct );
    }
    duty_pct += duty_step;
    if ( ( duty_pct > 50 ) || ( duty_pct < 10 ) ) 
    {
        duty_step = -duty_step;
        duty_pct += ( duty_step * 2 );
    }
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Vreg2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Smart Buck 2 Click

0

Smart Buck 2 Click is a compact add-on board that contains a high-frequency synchronous step-down DC-DC converter. This board features the TPS62363, a 3A processor supply with remote sense from Texas Instruments. The converter is optimized for battery-powered portable applications for a small solution size. It has an input range of 2.5V to 5.5V, which is common for battery technologies. The converter provides up to 3A peak load current operating at 2.5MHz typical switching frequency.

[Learn More]

ECG 3 Click

0

ECG 3 Click is a complete solution for ECG and HR application development, utilizing a specialized IC with a clinical-grade analog front-end (AFE). ECG 3 Click uses the MAX30003 IC, an ultra-low power, single-channel bio-sensor, which features a wide range of different options, making it an ideal solution for development of heart rate and ECG monitoring applications, fitness applications, for the ECG bio-authentication, and similar applications related to heart monitoring. ECG 3 Click is also equipped with the 3.5mm electrodes connector, making it ready to be used out of the box.

[Learn More]

Color 6 Click

0

Color 6 Click is a very accurate color sensing Click board™ which features the AS73211, an XYZ true color sensor from ams.

[Learn More]