TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142016 times)
  2. FAT32 Library (75250 times)
  3. Network Ethernet Library (59470 times)
  4. USB Device Library (49488 times)
  5. Network WiFi Library (45266 times)
  6. FT800 Library (44873 times)
  7. GSM click (31414 times)
  8. mikroSDK (30400 times)
  9. microSD click (27776 times)
  10. PID Library (27614 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Ambient 20 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.8

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 207 times

Not followed.

License: MIT license  

Ambient 20 Click is a compact add-on board used to measure the amount of the present ambient light. This board features the BU27030NUC, a 16-bit digital-output ambient light sensor with an I2C interface from Rohm Semiconductor. The BU27030NUC has a flexible and wide operating range of up to 20klx with a maximum resolution of 0.0007lux/count, providing an excellent responsivity close to the human eyes' response. It also features inherent 50Hz/60Hz light noise rejection and excellent IR-cut characteristics for high robustness at high sensitivity.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Ambient 20 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Ambient 20 Click" changes.

Do you want to report abuse regarding "Ambient 20 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Ambient 20 Click

Ambient 20 Click is a compact add-on board used to measure the amount of the present ambient light. This board features the BU27030NUC, a 16-bit digital-output ambient light sensor with an I2C interface from Rohm Semiconductor. The BU27030NUC has a flexible and wide operating range of up to 20klx with a maximum resolution of 0.0007lux/count, providing an excellent responsivity close to the human eyes' response. It also features inherent 50Hz/60Hz light noise rejection and excellent IR-cut characteristics for high robustness at high sensitivity.

ambient20_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Nov 2022.
  • Type : I2C type

Software Support

We provide a library for the Ambient 20 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Ambient 20 Click driver.

Standard key functions :

  • ambient20_cfg_setup Config Object Initialization function.

    void ambient20_cfg_setup ( ambient20_cfg_t *cfg );
  • ambient20_init Initialization function.

    err_t ambient20_init ( ambient20_t *ctx, ambient20_cfg_t *cfg );
  • ambient20_default_cfg Click Default Configuration function.

    err_t ambient20_default_cfg ( ambient20_t *ctx );

Example key functions :

  • ambient20_sw_reset Software reset function.

    err_t ambient20_sw_reset ( ambient20_t *ctx );
  • ambient20_set_gain Set data gain function.

    err_t ambient20_set_gain ( ambient20_t *ctx, uint8_t data0_gain, uint8_t data1_gain );
  • ambient20_read_data0 Read data0 function.

    err_t ambient20_read_data0 ( ambient20_t *ctx, uint16_t *data0_out );

Example Description

This example demonstrates the use of Ambient 20 Click board by measuring the ambient light level.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    ambient20_cfg_t ambient20_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    ambient20_cfg_setup( &ambient20_cfg );
    AMBIENT20_MAP_MIKROBUS( ambient20_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == ambient20_init( &ambient20, &ambient20_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( AMBIENT20_ERROR == ambient20_default_cfg ( &ambient20 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    uint8_t id;
    ambient20_get_manufacturer_id( &ambient20, &id );

    log_printf( &logger, "- - - - - - - - - - - - -\r\n" );
    log_printf( &logger, " Part ID = 0x%.2X \r\n", ( uint16_t ) id );
    log_printf( &logger, "- - - - - - - - - - - - -\r\n" );

    log_info( &logger, " Application Task " );
    log_printf( &logger, "- - - - - - - - - - - - -\r\n" );
}

Application Task

Measuring ambient light level by reading DATA0 and DATA1 channels of the Ambient 20 Click board and displaying it using UART Serial terminal.

void application_task ( void ) 
{
    //  Task implementation.
    float data0, data1;
    ambient20_get_data_lux( &ambient20, &data0, &data1 );

    log_printf( &logger, "Data 0: %.2f lx \r\n", data0 );
    log_printf( &logger, "Data 1: %.2f lx \r\n", data1 );
    log_printf( &logger, "- - - - - - - - - - - - -\r\n" );

    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Ambient20

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Timer Calculator

41

Timer Calculator is a free software development tool used for easier calculation of timer interrupts. If you like Timer Calculator you can support further development by contributing on following page: http://www.mikroe.com/timer-calculator/#support

[Learn More]

Environment 4 Click

0

Environment 4 Click is a compact add-on board combining 4th-generation SHT humidity and SGP air-quality sensing solutions from Sensirion. This board features SHT41A-AD1B and SGP41, an I2C-configurable high-accuracy relative humidity/temperature combined with a MOx-based gas sensor. The SHT41A-AD1B offers linearized digital output alongside temperature/humidity accuracy up to ±0.3°C/±2%RH. It performs best within the operating range of 5-60°C and 20-80%RH. With the help of SGP41, which features a temperature-controlled micro hotplate, it also provides a humidity-compensated VOC and NOx-based indoor air quality signal.

[Learn More]

Smart Buck 3 Click

0

Smart Buck 3 Click is a compact add-on board that contains a high-frequency synchronous step-down DC-DC converter. This board features the TPS62366A, a processor supply with I2C compatible interface and a remote sense from Texas Instruments. As input, it uses voltages in the range of 2.5V up to 5.5V, including support for common battery technologies. As output, the converter can scale voltage from 0.5V up to 1.77V in 10mV steps, retaining up to 2.5A peak output current, operating at 2.5MHz of the typical switching frequency.

[Learn More]