TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141207 times)
  2. FAT32 Library (73995 times)
  3. Network Ethernet Library (58641 times)
  4. USB Device Library (48761 times)
  5. Network WiFi Library (44458 times)
  6. FT800 Library (44032 times)
  7. GSM click (30784 times)
  8. mikroSDK (29513 times)
  9. PID Library (27339 times)
  10. microSD click (27188 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Accel 29 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 167 times

Not followed.

License: MIT license  

Accel 29 Click is a compact add-on board that contains an acceleration sensor. This board features the ADXL314, a three-axis ±200g accelerometer from Analog Devices. The ADXL314 offers 16-bit digital output data with a configurable host interface that supports SPI and I2C serial communication. An integrated memory management system with a 32-level FIFO buffer can store data to minimize host processor activity and lower overall system power consumption. Low power modes enable intelligent motion-based power management with threshold sensing and active acceleration measurement at low power dissipation.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Accel 29 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Accel 29 Click" changes.

Do you want to report abuse regarding "Accel 29 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Accel 29 Click

Accel 29 Click is a compact add-on board that contains an acceleration sensor. This board features the ADXL314, a three-axis ±200g accelerometer from Analog Devices. The ADXL314 offers 16-bit digital output data with a configurable host interface that supports SPI and I2C serial communication. An integrated memory management system with a 32-level FIFO buffer can store data to minimize host processor activity and lower overall system power consumption. Low power modes enable intelligent motion-based power management with threshold sensing and active acceleration measurement at low power dissipation.

accel29_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jan 2023.
  • Type : I2C/SPI type

Software Support

We provide a library for the Accel 29 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Accel 29 Click driver.

Standard key functions :

  • accel29_cfg_setup Config Object Initialization function.

    void accel29_cfg_setup ( accel29_cfg_t *cfg );
  • accel29_init Initialization function.

    err_t accel29_init ( accel29_t *ctx, accel29_cfg_t *cfg );
  • accel29_default_cfg Click Default Configuration function.

    err_t accel29_default_cfg ( accel29_t *ctx );

Example key functions :

  • accel29_calibrate_offset This function calibrates accel offset to the specified values by setting the OFSX/Y/Z registers.

    err_t accel29_calibrate_offset ( accel29_t *ctx, accel29_axes_t calib_axes );
  • accel29_get_avg_axes This function reads a specified number of samples for accel X, Y, and Z axis data in g and averages them.

    err_t accel29_get_avg_axes ( accel29_t *ctx, uint16_t num_samples, accel29_axes_t *avg_axes );

Example Description

This example demonstrates the use of Accel 29 Click board by reading and displaying the accelerometer data (X, Y, and Z axis) averaged from 100 samples.

The demo application is composed of two sections :

Application Init

Initializes the driver, performs the Click default configuration, and calibrates the accel data offsets.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    accel29_cfg_t accel29_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    accel29_cfg_setup( &accel29_cfg );
    ACCEL29_MAP_MIKROBUS( accel29_cfg, MIKROBUS_1 );
    err_t init_flag = accel29_init( &accel29, &accel29_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( ACCEL29_ERROR == accel29_default_cfg ( &accel29 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    accel29_axes_t calib_axes;
    calib_axes.x = ACCEL29_CALIB_X;
    calib_axes.y = ACCEL29_CALIB_Y;
    calib_axes.z = ACCEL29_CALIB_Z;
    if ( ACCEL29_ERROR == accel29_calibrate_offset ( &accel29, calib_axes ) )
    {
        log_error( &logger, " Calibrate offset." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Reads and displays on the USB UART the accelerometer data (X, Y, and Z axis) averaged from 100 samples.

void application_task ( void )
{
    accel29_axes_t axes;
    if ( ACCEL29_OK == accel29_get_avg_axes ( &accel29, ACCEL29_NUM_OF_SAMPLES, &axes ) )
    {
        log_printf( &logger, " X: %.1f g\r\n", axes.x );
        log_printf( &logger, " Y: %.1f g\r\n", axes.y );
        log_printf( &logger, " Z: %.1f g\r\n\n", axes.z );
    }
}

Note

This Click board should be used for high g applications of up to +-200g. It is not recommended for low g applications because of its high scale factor which is about 48.83 mg per LSB.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Accel29

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

EXPAND 5 click

5

EXPAND 5 Click features a low-voltage 24-bit I2C and SMBus I/O expander. This 24-bit I/O expander is designed to provide general-purpose remote I/O expansion for most microcontroller families via the I2C serial interface.

[Learn More]

OSD Click

0

OSD Click features MAX7456 single-channel monochrome OSD module with integrated EEPROM memory as well as two RCA sockets. It is used to create on-screen menus and other video overlays, such as custom graphics, company logo, time and date using 256 user-programmable characters or pictographs.

[Learn More]

EEPROM Click

0

EEPROM Click is an accessory board in mikroBUS form factor. It features 24C08WP - a highly reliable, high performance CMOS technology serial 8K EEPROM in DIP packaging.

[Learn More]