We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.7
mikroSDK Library: 2.0.0.0
Category: Brushed
Downloaded: 89 times
Not followed.
License: MIT license
H-Bridge 11 Click is a compact add-on board that allows a voltage to be applied across a load in either direction. This board features the MAX22200, an octal serial-controlled solenoid and motor driver from Analog Devices. The MAX22200 is SPI-configurable and rated for an operating voltage range from 4.5V to 36V. Each channel features a low impedance push-pull output stage with sink-and-source driving capability up to 1A RMS driving current. Its internal half-bridges can be configured as low-side or high-side drivers, supports two control methods (voltage and current drive regulation), and features a full set of protections and diagnostic functions.
Do you want to subscribe in order to receive notifications regarding "H-Bridge 11 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "H-Bridge 11 Click" changes.
Do you want to report abuse regarding "H-Bridge 11 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
5187_h_bridge_11_clic.zip [544.68KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
H-Bridge 11 Click is a compact add-on board that allows a voltage to be applied across a load in either direction. This board features the MAX22200, an octal serial-controlled solenoid and motor driver from Analog Devices. The MAX22200 is SPI-configurable and rated for an operating voltage range from 4.5V to 36V. Each channel features a low impedance push-pull output stage with sink-and-source driving capability up to 1A RMS driving current. Its internal half-bridges can be configured as low-side or high-side drivers, supports two control methods (voltage and current drive regulation), and features a full set of protections and diagnostic functions.
We provide a library for the H-Bridge 11 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for H-Bridge 11 Click driver.
hbridge11_cfg_setup
Config Object Initialization function.
void hbridge11_cfg_setup ( hbridge11_cfg_t *cfg );
hbridge11_init
Initialization function.
err_t hbridge11_init ( hbridge11_t *ctx, hbridge11_cfg_t *cfg );
hbridge11_default_cfg
Click Default Configuration function.
err_t hbridge11_default_cfg ( hbridge11_t *ctx );
hbridge11_get_fault_pin
This function returns the fault pin logic state.
uint8_t hbridge11_get_fault_pin ( hbridge11_t *ctx );
hbridge11_read_flags
This function reads and clears the fault flags from the status register.
err_t hbridge11_read_flags ( hbridge11_t *ctx, uint8_t *fault_flags );
hbridge11_set_motor_state
This function sets the operating state for the selected motor from the half-bridge pairs 0-1, 2-3, 4-5, or 6-7.
err_t hbridge11_set_motor_state ( hbridge11_t *ctx, uint8_t motor, uint8_t state );
This example demonstrates the use of the H-Bridge 11 Click board by driving the DC motors connected between OUT0-OUT1 and OUT2-OUT3 in both directions.
The demo application is composed of two sections :
Initializes the driver and performs the Click default configuration.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
hbridge11_cfg_t hbridge11_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
hbridge11_cfg_setup( &hbridge11_cfg );
HBRIDGE11_MAP_MIKROBUS( hbridge11_cfg, MIKROBUS_1 );
if ( SPI_MASTER_ERROR == hbridge11_init( &hbridge11, &hbridge11_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( HBRIDGE11_ERROR == hbridge11_default_cfg ( &hbridge11 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
Drives the motors connected between OUT0-OUT1 and OUT2-OUT3 in both directions in the span of 12 seconds, and logs data on the USB UART where you can track the program flow.
void application_task ( void )
{
hbridge11_set_motor_state ( &hbridge11, HBRIDGE11_MOTOR_SEL_0, HBRIDGE11_MOTOR_STATE_FORWARD );
hbridge11_set_motor_state ( &hbridge11, HBRIDGE11_MOTOR_SEL_1, HBRIDGE11_MOTOR_STATE_FORWARD );
log_printf( &logger, "\r\n MOTOR 0: FORWARD\r\n" );
log_printf( &logger, " MOTOR 1: FORWARD\r\n" );
hbridge11_check_fault ( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
hbridge11_set_motor_state ( &hbridge11, HBRIDGE11_MOTOR_SEL_0, HBRIDGE11_MOTOR_STATE_BRAKE );
hbridge11_set_motor_state ( &hbridge11, HBRIDGE11_MOTOR_SEL_1, HBRIDGE11_MOTOR_STATE_BRAKE );
log_printf( &logger, "\r\n MOTOR 0: BRAKE\r\n" );
log_printf( &logger, " MOTOR 1: BRAKE\r\n" );
hbridge11_check_fault ( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
hbridge11_set_motor_state ( &hbridge11, HBRIDGE11_MOTOR_SEL_0, HBRIDGE11_MOTOR_STATE_REVERSE );
hbridge11_set_motor_state ( &hbridge11, HBRIDGE11_MOTOR_SEL_1, HBRIDGE11_MOTOR_STATE_REVERSE );
log_printf( &logger, "\r\n MOTOR 0: REVERSE\r\n" );
log_printf( &logger, " MOTOR 1: REVERSE\r\n" );
hbridge11_check_fault ( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
hbridge11_set_motor_state ( &hbridge11, HBRIDGE11_MOTOR_SEL_0, HBRIDGE11_MOTOR_STATE_HI_Z );
hbridge11_set_motor_state ( &hbridge11, HBRIDGE11_MOTOR_SEL_1, HBRIDGE11_MOTOR_STATE_HI_Z );
log_printf( &logger, "\r\n MOTOR 0: DISCONNECTED\r\n" );
log_printf( &logger, " MOTOR 1: DISCONNECTED\r\n" );
hbridge11_check_fault ( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.