TOP Contributors

  1. MIKROE (2656 codes)
  2. Alcides Ramos (353 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136797 times)
  2. FAT32 Library (69983 times)
  3. Network Ethernet Library (55951 times)
  4. USB Device Library (46274 times)
  5. Network WiFi Library (41892 times)
  6. FT800 Library (41187 times)
  7. GSM click (28990 times)
  8. PID Library (26420 times)
  9. mikroSDK (26375 times)
  10. microSD click (25382 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Expand 15 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Port expander

Downloaded: 38 times

Not followed.

License: MIT license  

Expand 15 Click is a compact add-on board that contains a multi-channel I/O expander. This board features the TCAL6416, a general-purpose I/O expansion for most microcontroller families from Texas Instruments.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Expand 15 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Expand 15 click" changes.

Do you want to report abuse regarding "Expand 15 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Expand 15 click

Expand 15 Click is a compact add-on board that contains a multi-channel I/O expander. This board features the TCAL6416, a general-purpose I/O expansion for most microcontroller families from Texas Instruments.

expand15_click.png

click Product page


Click library

  • Author : Stefan Ilic
  • Date : Mar 2023.
  • Type : I2C type

Software Support

We provide a library for the Expand 15 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Expand 15 Click driver.

Standard key functions :

  • expand15_cfg_setup Config Object Initialization function.

    void expand15_cfg_setup ( expand15_cfg_t *cfg );
  • expand15_init Initialization function.

    err_t expand15_init ( expand15_t *ctx, expand15_cfg_t *cfg );
  • expand15_default_cfg Click Default Configuration function.

    err_t expand15_default_cfg ( expand15_t *ctx );

Example key functions :

  • expand15_hw_reset Expand 15 hardware reset function.

    void expand15_hw_reset ( expand15_t *ctx );
  • expand15_get_in_pin_state Expand 15 get input pin state function.

    err_t expand15_get_in_pin_state ( expand15_t *ctx, uint8_t port, uint8_t *pin_state );
  • expand15_set_out_pin_state Expand 15 set output pin state function.

    err_t expand15_set_out_pin_state ( expand15_t *ctx, uint8_t port, uint8_t pin_state );

Example Description

This example demonstrates the use of Expand 15 click board by setting and reading the ports state.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the click default configuration which sets half of the port 0 and port 1 pins as output ( P00, P02, P04, P06, P10, P12, P14 and P16) and the half of the port 0 and port 1 pins as inputs ( P01, P03, P05, P07, P11, P13, P15 and P17).


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    expand15_cfg_t expand15_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    expand15_cfg_setup( &expand15_cfg );
    EXPAND15_MAP_MIKROBUS( expand15_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == expand15_init( &expand15, &expand15_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( EXPAND15_ERROR == expand15_default_cfg ( &expand15 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
    log_printf( &logger, "- - - - - - - - - - - - - - - - - - - - - - - - - - \r\n" );
}

Application Task

Sets the state of the output pins of one port and then reads the status of input pins of that port and displays the results on the USB UART approximately 2 seconds.

void application_task ( void ) 
{
    uint8_t output_pin_state;
    uint8_t input_pin_state;

    // Setting port0 output pin ( P00, P02, P04 and P06 ) to high
    output_pin_state = EXPAND15_PIN_00_MASK | EXPAND15_PIN_02_MASK | EXPAND15_PIN_04_MASK | EXPAND15_PIN_06_MASK;
    expand15_set_out_pin_state( &expand15, EXPAND15_PORT_0, output_pin_state );
    Delay_ms ( 10 );

    // Checking state of the input pins on port0
    expand15_get_in_pin_state( &expand15, EXPAND15_PORT_0, &input_pin_state );
    log_printf( &logger, "OUTPUT PINS HIGH \r\n" );
    log_printf( &logger, "INPUT PINS |" );
    log_printf( &logger, " P01 : %c |", ( ( input_pin_state & EXPAND15_PIN_01_MASK ) ? 'H' : 'L' ) );
    log_printf( &logger, " P03 : %c |", ( ( input_pin_state & EXPAND15_PIN_03_MASK ) ? 'H' : 'L' ) );
    log_printf( &logger, " P05 : %c |", ( ( input_pin_state & EXPAND15_PIN_05_MASK ) ? 'H' : 'L' ) );
    log_printf( &logger, " P07 : %c \r\n", ( ( input_pin_state & EXPAND15_PIN_07_MASK ) ? 'H' : 'L' ) );
    Delay_ms ( 500 );

    // Setting port0 output pin ( P00, P02, P04 and P06 ) to low
    output_pin_state = EXPAND15_ALL_PINS_OFF;
    expand15_set_out_pin_state( &expand15, EXPAND15_PORT_0, output_pin_state );
    Delay_ms ( 10 );

    // Checking state of the input pins on port0
    expand15_get_in_pin_state( &expand15, EXPAND15_PORT_0, &input_pin_state );
    log_printf( &logger, "OUTPUT PINS LOW \r\n" );
    log_printf( &logger, "INPUT PINS |" );
    log_printf( &logger, " P01 : %c |", ( ( input_pin_state & EXPAND15_PIN_01_MASK ) ? 'H' : 'L' ) );
    log_printf( &logger, " P03 : %c |", ( ( input_pin_state & EXPAND15_PIN_03_MASK ) ? 'H' : 'L' ) );
    log_printf( &logger, " P05 : %c |", ( ( input_pin_state & EXPAND15_PIN_05_MASK ) ? 'H' : 'L' ) );
    log_printf( &logger, " P07 : %c \r\n", ( ( input_pin_state & EXPAND15_PIN_07_MASK ) ? 'H' : 'L' ) );
    log_printf( &logger, "- - - - - - - - - - - - - - - - - - - - - - - - - - \r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    // Setting port1 output pin ( P10, P12, P14 and P01 ) to high
    output_pin_state = EXPAND15_PIN_10_MASK | EXPAND15_PIN_12_MASK | EXPAND15_PIN_14_MASK | EXPAND15_PIN_16_MASK;
    expand15_set_out_pin_state( &expand15, EXPAND15_PORT_1, output_pin_state );
    Delay_ms ( 10 );

    // Checking state of the input pins on port1
    expand15_get_in_pin_state( &expand15, EXPAND15_PORT_1, &input_pin_state );
    log_printf( &logger, "OUTPUT PINS HIGH \r\n" );
    log_printf( &logger, "INPUT PINS |" );
    log_printf( &logger, " P11 : %c |", ( ( input_pin_state & EXPAND15_PIN_11_MASK ) ? 'H' : 'L' ) );
    log_printf( &logger, " P13 : %c |", ( ( input_pin_state & EXPAND15_PIN_13_MASK ) ? 'H' : 'L' ) );
    log_printf( &logger, " P15 : %c |", ( ( input_pin_state & EXPAND15_PIN_15_MASK ) ? 'H' : 'L' ) );
    log_printf( &logger, " P17 : %c \r\n", ( ( input_pin_state & EXPAND15_PIN_17_MASK ) ? 'H' : 'L' ) );
    Delay_ms ( 500 );

    // Setting port1 output pin ( P10, P12, P14 and P16 ) to low
    output_pin_state = EXPAND15_ALL_PINS_OFF;
    expand15_set_out_pin_state( &expand15, EXPAND15_PORT_1, output_pin_state );
    Delay_ms ( 10 );

    // Checking state of the input pins on port1
    expand15_get_in_pin_state( &expand15, EXPAND15_PORT_1, &input_pin_state );
    log_printf( &logger, "OUTPUT PINS LOW \r\n" );
    log_printf( &logger, "INPUT PINS |" );
    log_printf( &logger, " P11 : %c |", ( ( input_pin_state & EXPAND15_PIN_11_MASK ) ? 'H' : 'L' ) );
    log_printf( &logger, " P13 : %c |", ( ( input_pin_state & EXPAND15_PIN_13_MASK ) ? 'H' : 'L' ) );
    log_printf( &logger, " P15 : %c |", ( ( input_pin_state & EXPAND15_PIN_15_MASK ) ? 'H' : 'L' ) );
    log_printf( &logger, " P17 : %c \r\n", ( ( input_pin_state & EXPAND15_PIN_17_MASK ) ? 'H' : 'L' ) );
    log_printf( &logger, "- - - - - - - - - - - - - - - - - - - - - - - - - - \r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

Note

In order for this example to work as intended it is necessary to connect the input and output pins eg. P00 and P01, P02 and P03 etc. Floating input pins will be shown as a high state.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Expand15

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

SOLAR ENERGY click

0

This application charge the batery when is empty

[Learn More]

TouchKey click

5

Touchkey click has four capacitive pads powered by TTP224, a touchpad detector IC. Capacitive buttons like these can be toggled even when placed under a layer of glass or paper. The example demonstrates the usage of TouchKey Click

[Learn More]

ADC 11 click

0

ADC 11 Click is a compact add-on board that contains a high-performance data converter. This board features the LTC1864, a 16-bit 250ksps analog-to-digital converter from Analog Devices. With a typical supply current of only 850µA at the maximum sampling frequency, the LTC1864 is among the lowest power consumption ADCs available. After conversion, the LTC1864 goes into a low-power Sleep mode, further reducing the supply current. That’s why it can run at proper micro-power levels in applications that do not require the maximum sampling rate of the LTC1864. This Click board™ is suitable for high-speed data acquisition, low power battery-operated instrumentation, isolated and remote data acquisition, and many other applications.

[Learn More]