TOP Contributors

  1. MIKROE (2655 codes)
  2. Alcides Ramos (353 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136782 times)
  2. FAT32 Library (69979 times)
  3. Network Ethernet Library (55950 times)
  4. USB Device Library (46274 times)
  5. Network WiFi Library (41888 times)
  6. FT800 Library (41184 times)
  7. GSM click (28988 times)
  8. PID Library (26419 times)
  9. mikroSDK (26373 times)
  10. microSD click (25382 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

HW Monitor 2 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.5

mikroSDK Library: 2.0.0.0

Category: Power Switch

Downloaded: 23 times

Not followed.

License: MIT license  

HW Monitor 2 Click is a compact add-on board used to monitor and regulate the performance of various hardware components within an embedded system. This board features the AMC80, an I2C-configurable system hardware monitor from Texas Instruments that contains a 10-bit ADC capable of measuring seven positive voltages and local temperature. The AMC80 also has two programmable fan speed monitoring inputs besides other hardware monitoring functions like chassis intrusion detection, additional external interrupt input, and master reset for external purposes, as well as a programmable upper over-limit and lower under-limit alarms that activate when the programmed limits are exceeded.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "HW Monitor 2 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "HW Monitor 2 click" changes.

Do you want to report abuse regarding "HW Monitor 2 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


HW Monitor 2 click

HW Monitor 2 Click is a compact add-on board used to monitor and regulate the performance of various hardware components within an embedded system. This board features the AMC80, an I2C-configurable system hardware monitor from Texas Instruments that contains a 10-bit ADC capable of measuring seven positive voltages and local temperature. The AMC80 also has two programmable fan speed monitoring inputs besides other hardware monitoring functions like chassis intrusion detection, additional external interrupt input, and master reset for external purposes, as well as a programmable upper over-limit and lower under-limit alarms that activate when the programmed limits are exceeded.

hwmonitor2_click.png

click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Apr 2023.
  • Type : I2C type

Software Support

We provide a library for the HW Monitor 2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for HW Monitor 2 Click driver.

Standard key functions :

  • hwmonitor2_cfg_setup Config Object Initialization function.

    void hwmonitor2_cfg_setup ( hwmonitor2_cfg_t *cfg );
  • hwmonitor2_init Initialization function.

    err_t hwmonitor2_init ( hwmonitor2_t *ctx, hwmonitor2_cfg_t *cfg );
  • hwmonitor2_default_cfg Click Default Configuration function.

    err_t hwmonitor2_default_cfg ( hwmonitor2_t *ctx );

Example key functions :

  • hwmonitor2_get_analog_inputs HW Monitor 2 gets analog inputs voltage function.

    err_t hwmonitor2_get_analog_inputs ( hwmonitor2_t *ctx, uint8_t ch_pos, float *voltage );
  • hwmonitor2_get_temperature HW Monitor 2 gets temperature function.

    err_t hwmonitor2_get_temperature ( hwmonitor2_t *ctx, float *temperature );
  • hwmonitor2_set_config HW Monitor 2 set the configuration function.

    err_t hwmonitor2_set_config ( hwmonitor2_t *ctx, hwmonitor2_config_t config );

Example Description

This example demonstrates the use of the HW Monitor 2 Click board™. The demo application monitors analog voltage inputs and local temperature data.

The demo application is composed of two sections :

Application Init

The initialization of the I2C module, log UART and additional pins. After the driver init, the app executes a default configuration.

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    hwmonitor2_cfg_t hwmonitor2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    hwmonitor2_cfg_setup( &hwmonitor2_cfg );
    HWMONITOR2_MAP_MIKROBUS( hwmonitor2_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == hwmonitor2_init( &hwmonitor2, &hwmonitor2_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( HWMONITOR2_ERROR == hwmonitor2_default_cfg ( &hwmonitor2 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
    log_printf( &logger, "---------------------------\r\n" );
    Delay_ms ( 1000 );
}

Application Task

This example displays the Analog Voltage Inputs from CH0 to CH6 [mV] and Temperature [degree Celsius] data. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void ) 
{
    static float temperature, voltage;
    for ( uint8_t ch_pos = 0; ch_pos < 7; ch_pos++ )
    {
        if ( HWMONITOR2_OK == hwmonitor2_get_analog_inputs( &hwmonitor2, ch_pos, &voltage ) )
        {
            log_printf( &logger, "CH %d: %.1f mV\r\n", ( uint16_t ) ch_pos, voltage );
            Delay_ms ( 100 );
        }
    }
    log_printf( &logger, "- - - - - - - - - - - - - -\r\n" );

    if ( HWMONITOR2_OK == hwmonitor2_get_temperature( &hwmonitor2, &temperature ) )
    {
        log_printf( &logger, " Temperature: %.3f [deg c]\r\n", temperature );
        Delay_ms ( 100 );
    }
    log_printf( &logger, "---------------------------\r\n" );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.HWMonitor2

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Servo click

5

Servo click is a 16-channel PWM servo driver with the voltage sensing circuitry. It can be used to simultaneously control 16 servo motors, each with its own programmable PWM signal.

[Learn More]

RS485 3.3V click

0

RS485 click 3.3V is a RS422/485 transceiver Click board, which can be used as an interface between the TTL level UART and the RS422/485 communication bus.

[Learn More]

6DOF IMU 5 click

0

6DOF IMU 5 Click features 7-Axis ICM-20789 chip from TDK, an integrated 6-axis inertial device that combines a 3-axis gyroscope, 3-axis accelerometer, and an ultra-low noise MEMS capacitive pressure sensor.

[Learn More]