TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (387 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (120 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140166 times)
  2. FAT32 Library (72621 times)
  3. Network Ethernet Library (57641 times)
  4. USB Device Library (47953 times)
  5. Network WiFi Library (43553 times)
  6. FT800 Library (42942 times)
  7. GSM click (30140 times)
  8. mikroSDK (28668 times)
  9. PID Library (27055 times)
  10. microSD click (26552 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Headphone AMP 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.8

mikroSDK Library: 2.0.0.0

Category: Signal processing

Downloaded: 108 times

Not followed.

License: MIT license  

Headphone AMP 3 Click is a compact add-on board that contains a stereo headphone amplifier. This board features the INA1620, a high-fidelity audio operational amplifier with integrated thin-film resistors and EMI filters from Texas Instruments. Over its dual amplifiers, it achieves a very low noise density and drives a 32Ω load at 150mW of output power.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Headphone AMP 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Headphone AMP 3 Click" changes.

Do you want to report abuse regarding "Headphone AMP 3 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Headphone AMP 3 Click

Headphone AMP 3 Click is a compact add-on board that contains a stereo headphone amplifier. This board features the INA1620, a high-fidelity audio operational amplifier with integrated thin-film resistors and EMI filters from Texas Instruments. Over its dual amplifiers, it achieves a very low noise density and drives a 32Ω load at 150mW of output power.

headphoneamp3_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Apr 2023.
  • Type : GPIO type

Software Support

We provide a library for the Headphone AMP 3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Headphone AMP 3 Click driver.

Standard key functions :

  • headphoneamp3_cfg_setup Config Object Initialization function.

    void headphoneamp3_cfg_setup ( headphoneamp3_cfg_t *cfg );
  • headphoneamp3_init Initialization function.

    err_t headphoneamp3_init ( headphoneamp3_t *ctx, headphoneamp3_cfg_t *cfg );
  • headphoneamp3_default_cfg Click Default Configuration function.

    void headphoneamp3_default_cfg ( headphoneamp3_t *ctx );

Example key functions :

  • headphoneamp3_enable_power Headphone AMP 3 power pin setting function.

    void headphoneamp3_enable_power ( headphoneamp3_t *ctx, uint8_t state );
  • headphoneamp3_enable_amp Headphone AMP 3 amp pin setting function.

    void headphoneamp3_enable_amp ( headphoneamp3_t *ctx, uint8_t state );

Example Description

This library contains API for the Headphone AMP 3 Click driver. This demo application shows use of a Headphone AMP 3 Click board™.

The demo application is composed of two sections :

Application Init

Initialization of GPIO module and log UART. After driver initialization the app set default settings.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    headphoneamp3_cfg_t headphoneamp3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    headphoneamp3_cfg_setup( &headphoneamp3_cfg );
    HEADPHONEAMP3_MAP_MIKROBUS( headphoneamp3_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == headphoneamp3_init( &headphoneamp3, &headphoneamp3_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    headphoneamp3_default_cfg ( &headphoneamp3 );

    log_info( &logger, " Application Task " );
}

Application Task

This example demonstrates the use of the Headphone AMP 3 Click board™. The app is enabling and disabling headphone output by changing ENA pin state every 10 seconds.

void application_task ( void ) 
{
    log_printf( &logger, " Enabling headphone output \r\n" );
    headphoneamp3_enable_amp( &headphoneamp3, HEADPHONEAMP3_ENABLE );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, " Disabling headphone output \r\n" );
    headphoneamp3_enable_amp( &headphoneamp3, HEADPHONEAMP3_DISABLE );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.HeadphomeAMP3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

I2C MUX 4 click

5

I2C MUX 4 Click is a compact add-on board that contains a dual bidirectional translating switch dedicated for applications with I2C slave address conflicts. This board features the TCA9543APWR, a low voltage 2-channel I2C bus switch with interrupt logic from Texas Instruments.

[Learn More]

Pressure 11 Click

0

This sensor offers many benefits, including low power consumption, high resolution of the pressure data, embedded thermal compensation, FIFO buffer with several operating modes, temperature measurement, etc.

[Learn More]

Color click

0

Simple demonstration of using TCS3471 color sensor.

[Learn More]