TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (392 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (123 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140530 times)
  2. FAT32 Library (73019 times)
  3. Network Ethernet Library (58014 times)
  4. USB Device Library (48208 times)
  5. Network WiFi Library (43816 times)
  6. FT800 Library (43274 times)
  7. GSM click (30338 times)
  8. mikroSDK (28983 times)
  9. PID Library (27106 times)
  10. microSD click (26702 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Relay 5 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Relay

Downloaded: 172 times

Not followed.

License: MIT license  

Relay 5 Click is a compact add-on board with general-purpose relays that any host MCU can control. This board features three J1031C3VDC.15S, a high-current single-pole double-throw (SPDT) signal relays controlled by the PCA9538A, a low-voltage 8-bit I/O port expander from NXP Semiconductors. Highly sensitive, the J1031C3VDC.15S offers a low coil power consumption in a small, lightweight package with PC pin mounting. It comes with a dimension of 12.5x7.5x10 millimeters (LxWxH) and a 1C contact arrangement with a coil voltage of 3VDC, providing a maximum switching voltage of 125VAC/60VDC.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Relay 5 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Relay 5 Click" changes.

Do you want to report abuse regarding "Relay 5 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Relay 5 Click

Relay 5 Click is a compact add-on board with general-purpose relays that any host MCU can control. This board features three J1031C3VDC.15S, a high-current single-pole double-throw (SPDT) signal relays controlled by the PCA9538A, a low-voltage 8-bit I/O port expander from NXP Semiconductors. Highly sensitive, the J1031C3VDC.15S offers a low coil power consumption in a small, lightweight package with PC pin mounting. It comes with a dimension of 12.5x7.5x10 millimeters (LxWxH) and a 1C contact arrangement with a coil voltage of 3VDC, providing a maximum switching voltage of 125VAC/60VDC.

relay5_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Mar 2023.
  • Type : I2C type

Software Support

We provide a library for the Relay 5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Relay 5 Click driver.

Standard key functions :

  • relay5_cfg_setup Config Object Initialization function.

    void relay5_cfg_setup ( relay5_cfg_t *cfg );
  • relay5_init Initialization function.

    err_t relay5_init ( relay5_t *ctx, relay5_cfg_t *cfg );
  • relay5_default_cfg Click Default Configuration function.

    err_t relay5_default_cfg ( relay5_t *ctx );

Example key functions :

  • relay5_set_relay1_open This function sets the relay 1 to normally open state by setting the RL1 pin to low logic level.

    err_t relay5_set_relay1_open ( relay5_t *ctx );
  • relay5_set_relay1_close This function sets the relay 1 to normally close state by setting the RL1 pin to high logic level.

    err_t relay5_set_relay1_close ( relay5_t *ctx );
  • relay5_switch_relay1 This function switches the relay 1 state by toggling the RL1 pin logic level.

    err_t relay5_switch_relay1 ( relay5_t *ctx );

Example Description

This example demonstrates the use of Relay 5 Click board by toggling the relays state.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    relay5_cfg_t relay5_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    relay5_cfg_setup( &relay5_cfg );
    RELAY5_MAP_MIKROBUS( relay5_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == relay5_init( &relay5, &relay5_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( RELAY5_ERROR == relay5_default_cfg ( &relay5 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Switches all relays state every 5 seconds and displays the state on the USB UART.

void application_task ( void )
{
    relay5_set_relay1_open ( &relay5 );
    log_printf( &logger, " Relay 1 set to normally open state\r\n" );
    relay5_set_relay2_close ( &relay5 );
    log_printf( &logger, " Relay 2 set to normally close state\r\n" );
    relay5_set_relay3_open ( &relay5 );
    log_printf( &logger, " Relay 3 set to normally open state\r\n\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    relay5_set_relay1_close ( &relay5 );
    log_printf( &logger, " Relay 1 set to normally close state\r\n" );
    relay5_set_relay2_open ( &relay5 );
    log_printf( &logger, " Relay 2 set to normally open state\r\n" );
    relay5_set_relay3_close ( &relay5 );
    log_printf( &logger, " Relay 3 set to normally close state\r\n\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Relay5

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

ISO ADC 3 click

5

ISO ADC 3 Click is a compact add-on board that contains a single-channel precision isolation amplifier.

[Learn More]

ECG 7 Click

0

ECG 7 Click is a compact add-on board that records the heart's electrical activity. This board features the MCP6N16, a single zero-drift instrumentation amplifier with selectable gain from Microchip. In addition to the jack connector provided for connecting the cable with ECG electrodes, this Click boardâ„¢ offers the possibility of connecting electrodes through screw terminals or an onboard header if the electrode connection does not match the jack connector. Besides, the user is allowed to process the output signal in analog or digital form.

[Learn More]

ADC 9 Click

0

ADC 9 Click is 8th channel analog to digital converter expansion board, for projects where you have demand for multi channel ADC conversion such as microcontrollers with small number or none analog inputs. This Click board is based on MCP3564 a 24-bit Delta-Sigma Analog-to-Digital Converter with programmable data rate of up to 153.6 ksps from Microchip.

[Learn More]