TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141697 times)
  2. FAT32 Library (74777 times)
  3. Network Ethernet Library (59218 times)
  4. USB Device Library (49226 times)
  5. Network WiFi Library (44999 times)
  6. FT800 Library (44536 times)
  7. GSM click (31200 times)
  8. mikroSDK (30103 times)
  9. microSD click (27586 times)
  10. PID Library (27540 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Microwave 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 253 times

Not followed.

License: MIT license  

Microwave 4 Click is a compact add-on board that utilizes the Doppler Shift Phenomenon to sense motion. This board features the PD-V12, a miniature high-frequency microwave transceiver from Ningbo Pdlux Electronic Technology. The transmitter on this transceiver works on a 24.1GHz frequency over the flat Plane antenna.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Microwave 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Microwave 4 Click" changes.

Do you want to report abuse regarding "Microwave 4 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Microwave 4 Click

Microwave 4 Click is a compact add-on board that utilizes the Doppler Shift Phenomenon to sense motion. This board features the PD-V12, a miniature high-frequency microwave transceiver from Ningbo Pdlux Electronic Technology. The transmitter on this transceiver works on a 24.1GHz frequency over the flat Plane antenna.

microwave4_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jun 2023.
  • Type : ADC/I2C type

Software Support

We provide a library for the Microwave 4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Microwave 4 Click driver.

Standard key functions :

  • microwave4_cfg_setup Config Object Initialization function.

    void microwave4_cfg_setup ( microwave4_cfg_t *cfg );
  • microwave4_init Initialization function.

    err_t microwave4_init ( microwave4_t *ctx, microwave4_cfg_t *cfg );

Example key functions :

  • microwave4_read_raw_adc Microwave 4 read raw ADC value function.

    err_t microwave4_read_raw_adc ( microwave4_t *ctx, uint16_t *raw_adc );
  • microwave4_read_voltage Microwave 4 read voltage level function.

    err_t microwave4_read_voltage ( microwave4_t *ctx, float *voltage );
  • microwave4_set_vref Microwave 4 set vref function.

    err_t microwave4_set_vref ( microwave4_t *ctx, float vref );

Example Description

This example demonstrates the use of the Microwave 4 Click board™ by reading and displaying the results of AD conversion and motion detection.

The demo application is composed of two sections :

Application Init

The initialization of I2C or ADC module and log UART. After driver initialization, the app calculates the reference ADC value.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    microwave4_cfg_t microwave4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    microwave4_cfg_setup( &microwave4_cfg );
    MICROWAVE4_MAP_MIKROBUS( microwave4_cfg, MIKROBUS_1 );
    err_t init_flag = microwave4_init( &microwave4, &microwave4_cfg );
    if ( ( ADC_ERROR == init_flag ) || ( I2C_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    log_printf( &logger, " Calibrating the sensor...\r\n" );
    log_printf( &logger, " There must be no movement near the sensor!\r\n" );
    log_printf( &logger, "----------------------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    if ( MICROWAVE4_OK == microwave4_read_voltage( &microwave4, &reference ) )
    {
        log_printf( &logger, " The sensor has been calibrated!\r\n" );
        log_printf( &logger, "  Detector AN Voltage : %.3f[V]\r\n", reference );
        log_printf( &logger, "----------------------------------\r\n" );
        Delay_ms ( 100 );
    }
    else
    {
        log_error( &logger, " Communication error." );
        for ( ; ; );
    }

    log_printf( &logger, "The motion detector unit is ready.\r\n" );
    log_printf( &logger, "----------------------------------\r\n" );
    Delay_ms ( 100 );

    log_info( &logger, " Application Task " );
}

Application Task

The demo application reads the ADC results, takes an ADC sample, compares the difference between the taken samples and the ADC reference value, and reports the movement if the difference is higher/lower than the selected threshold value. Results are being sent to the UART Terminal, where you can track their changes.


void application_task ( void ) 
{
    if ( MICROWAVE4_OK == microwave4_read_voltage( &microwave4, &voltage ) )
    {
        if ( ( ( voltage + MICROWAVE4_THRESHOLD ) < reference ) || 
             ( ( voltage - MICROWAVE4_THRESHOLD ) > reference ) )
        {
            if ( MICROWAVE4_FLAG_SET == flag )
            {
                log_printf( &logger, " Motion detected!\r\n" );
                log_printf( &logger, " Detector AN Voltage : %.3f[V]\r\n", voltage );
                log_printf( &logger, "----------------------------------\r\n" );
                flag = MICROWAVE4_FLAG_CLEAR;
                Delay_ms ( 100 );
            }
        }
        else
        {
            flag = MICROWAVE4_FLAG_SET;
        }
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Microwave4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Ultrasonic 2 click

6

The Ultrasonic 2 click is an ultrasonic range detection Click board, capable of detecting both near-field and far-field objects. It is equipped with the PGA460, a highly-integrated system-on-chip (SoC), based on SONAR principle.

[Learn More]

Pressure 20 Click

0

Pressure 20 Click is a compact add-on board that contains a board-mount pressure sensor. This board features the ICP-20100, a high-accuracy digital barometric pressure and temperature sensor from TDK InvenSense. The ICP-20100 is based on MEMS capacitive technology with ultra-low noise, low power consumption, and temperature stability alongside programmable output: all-pressure, all-temperature, or pressure and temperature output. It converts output data into a 20-bit digital value and sends the information via a configurable host interface that supports SPI and I2C serial communications. It measures pressure from 30kPa up to 110kPa with an accuracy of ±20Pa over a wide operating temperature range.

[Learn More]

USB to I2C 2 Click

0

USB to I2C 2 Click is a compact add-on board that contains a general-purpose USB to I2C serial interface. This board features the FT201X, a full-speed USB to I2C protocol converter from FTDI. The FT201X converts USB2.0 full-speed to an I2C serial interface capable of operating up to 3.4MBit/s, with low power consumption (typical 8mA). The entire USB protocol is handled on the chip itself, where no USB-specific firmware programming is required. It also has a fully-integrated 2048 byte Multi-Time-Programmable (MTP) memory for storing device descriptors and CBUS I/O user-desirable configuration. This Click board™ includes the complete FT-X series feature set and enables USB to be added into a system design quickly and easily over an I2C interface.

[Learn More]