TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141291 times)
  2. FAT32 Library (74089 times)
  3. Network Ethernet Library (58715 times)
  4. USB Device Library (48826 times)
  5. Network WiFi Library (44525 times)
  6. FT800 Library (44073 times)
  7. GSM click (30805 times)
  8. mikroSDK (29658 times)
  9. PID Library (27355 times)
  10. microSD click (27251 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Wheatstone Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: Measurements

Downloaded: 173 times

Not followed.

License: MIT license  

Wheatstone Click is a measurement Click board™ which utilizes a Wheatstone bridge circuit onboard, in order to precisely measure the resistance of an external element. Besides the wheatstone bridge circuit, this Click board™ also utilizes MAX4208 – an ultra-low offset/drift, precision instrumentation amplifier, from Maxim Integrated.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Wheatstone Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Wheatstone Click" changes.

Do you want to report abuse regarding "Wheatstone Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Wheatstone Click

Wheatstone Click is a measurement Click board™ which utilizes a Wheatstone bridge circuit onboard, in order to precisely measure the resistance of an external element. Besides the wheatstone bridge circuit, this Click board™ also utilizes MAX4208 – an ultra-low offset/drift, precision instrumentation amplifier, from Maxim Integrated.

wheatstone_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jun 2020.
  • Type : SPI type

Software Support

We provide a library for the Wheatstone Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Wheatstone Click driver.

Standard key functions :

  • wheatstone_cfg_setup Config Object Initialization function.

    void wheatstone_cfg_setup ( wheatstone_cfg_t *cfg ); 
  • wheatstone_init Initialization function.

    err_t wheatstone_init ( wheatstone_t *ctx, wheatstone_cfg_t *cfg );

Example key functions :

  • wheatstone_set_potentiometer Set potentiometer ( 0 - 100k )

    void wheatstone_set_potentiometer ( wheatstone_t *ctx, uint8_t pot_value );
  • wheatstone_read_an_pin_voltage This function reads results of AD conversion of the AN pin and converts them to proportional voltage level.

    err_t wheatstone_read_an_pin_voltage ( wheatstone_t *ctx, float *data_out );

Examples Description

This example demonstrates the use of Wheatstone Click board by measuring the input resistance.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger and sets the default potentiometer (gain) level.


void application_init ( void )
{
    log_cfg_t log_cfg;
    wheatstone_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    wheatstone_cfg_setup( &cfg );
    WHEATSTONE_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    wheatstone_init( &wheatstone, &cfg );

    wheatstone_set_potentiometer ( &wheatstone, WHEATSTONE_POT_MAX );

    log_info( &logger, " Application Task " );
}

Application Task

Reads the AN pin voltage and calculates the input resistance from it. All data are being displayed on the USB UART where you can track their changes.


void application_task ( void )
{
    float an_pin_v = 0;
    float vout = 0;
    float r_kohm = 0;
    if ( WHEATSTONE_OK == wheatstone_read_an_pin_voltage ( &wheatstone, &an_pin_v ) ) 
    {
        vout = an_pin_v / wheatstone.gain;
        if ( 0 != vout )
        {
            r_kohm = ( WHEATSTONE_VCC_5V - 2 * vout ) / ( 4 * vout );
        }
        log_printf( &logger, " VCC     : %.3f V\r\n", WHEATSTONE_VCC_5V );
        log_printf( &logger, " GAIN    : %.3f\r\n", wheatstone.gain );
        log_printf( &logger, " AN_PIN  : %.3f V\r\n", an_pin_v );
        log_printf( &logger, " VOUT    : %.3f V\r\n", vout );
        log_printf( &logger, " R_INPUT : %.3f kOhm\r\n\n", r_kohm );
        Delay_ms ( 1000 );
    }
}  

Note

The following formulas you may find useful:

  • AN_PIN(V) = ( ( 1kOhm + R_INPUT(kOhm) ) / ( 1kOhm + 2R_INPUT(kOhm) ) - 1/2 ) VCC(V) * GAIN
  • VOUT(V) = AN_PIN(V) / GAIN
  • R_INPUT(kOhm) = ( VCC(V) GAIN - 2AN_PIN(V) ) / ( 4*AN_PIN(V) )
  • R_INPUT(kOhm) = ( VCC(V) - 2VOUT(V) ) / ( 4VOUT(V) )

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Wheatstone

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

SWI EEPROM Click

0

SWI EEPROM Click is a compact add-on board that provides a highly reliable memory solution. This board features the AT21CS01, a single-wire serial EEPROM with a unique, factory-programmed 64-bit serial number from Microchip Technology. The AT21CS01 has an ultra-high write endurance capability allowing more than one million cycles for each memory location to meet the requirements for today's high-write endurance applications. It is internally as 128 words of 8 bits each with achieved communication through a single I/O pin with Standard-Speed and High-Speed mode options. Also, it offers a security register with a factory-programmed serial number, which makes it the easiest way to add identification to various accessories and consumables.

[Learn More]

mikroTFT - Example

0

This is a sample program which demonstrates the use of mikroTFT board.

[Learn More]

Ambient 20 Click

0

Ambient 20 Click is a compact add-on board used to measure the amount of the present ambient light. This board features the BU27030NUC, a 16-bit digital-output ambient light sensor with an I2C interface from Rohm Semiconductor. The BU27030NUC has a flexible and wide operating range of up to 20klx with a maximum resolution of 0.0007lux/count, providing an excellent responsivity close to the human eyes' response. It also features inherent 50Hz/60Hz light noise rejection and excellent IR-cut characteristics for high robustness at high sensitivity.

[Learn More]