TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139263 times)
  2. FAT32 Library (71752 times)
  3. Network Ethernet Library (57128 times)
  4. USB Device Library (47431 times)
  5. Network WiFi Library (43092 times)
  6. FT800 Library (42408 times)
  7. GSM click (29835 times)
  8. mikroSDK (28080 times)
  9. PID Library (26886 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

EEPROM 11 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: EEPROM

Downloaded: 73 times

Not followed.

License: MIT license  

EEPROM 11 Click is a compact add-on board with a highly reliable, nonvolatile memory solution. This board features the S-34C04AB, an EEPROM for DIMM serial presence detection from ABLIC. The EEPROM is internally organized as 2 pages of 256 words x 8-bit, and a capacity of 4Kbits and is an EE1004-1 JEDEC standard-compliant.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "EEPROM 11 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "EEPROM 11 Click" changes.

Do you want to report abuse regarding "EEPROM 11 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


EEPROM 11 Click

EEPROM 11 Click is a compact add-on board with a highly reliable, nonvolatile memory solution. This board features the S-34C04AB, an EEPROM for DIMM serial presence detection from ABLIC. The EEPROM is internally organized as 2 pages of 256 words x 8-bit, and a capacity of 4Kbits and is an EE1004-1 JEDEC standard-compliant.

eeprom11_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Aug 2023.
  • Type : I2C type

Software Support

We provide a library for the EEPROM 11 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for EEPROM 11 Click driver.

Standard key functions :

  • eeprom11_cfg_setup Config Object Initialization function.

    void eeprom11_cfg_setup ( eeprom11_cfg_t *cfg );
  • eeprom11_init Initialization function.

    err_t eeprom11_init ( eeprom11_t *ctx, eeprom11_cfg_t *cfg );
  • eeprom11_default_cfg Click Default Configuration function.

    err_t eeprom11_default_cfg ( eeprom11_t *ctx );

Example key functions :

  • eeprom11_page_write EEPROM 11 page write function.

    err_t eeprom11_page_write ( eeprom11_t *ctx, uint8_t address, uint8_t *data_in );
  • eeprom11_clear_page EEPROM 11 page clear function.

    err_t eeprom11_clear_page ( eeprom11_t *ctx, uint8_t address );
  • eeprom11_set_page_addr EEPROM 11 set page address function.

    err_t eeprom11_set_page_addr ( eeprom11_t *ctx, uint8_t page_addr );

Example Description

This is an example that demonstrates the use of the EEPROM 11 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver and USB UART logging, disables write protection.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    eeprom11_cfg_t eeprom11_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    eeprom11_cfg_setup( &eeprom11_cfg );
    EEPROM11_MAP_MIKROBUS( eeprom11_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == eeprom11_init( &eeprom11, &eeprom11_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( EEPROM11_ERROR == eeprom11_default_cfg ( &eeprom11 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Writes a desired number of data bytes to the EEPROM 11 memory into a specified address, and verifies that it is written correctly by reading from the same memory location.

void application_task ( void ) 
{
    err_t error_flag = EEPROM11_OK;
    uint8_t rx_data[ 16 ] = { 0 };
    uint8_t tx_data[ 16 ] = TX_DATA;

    eeprom11_clear_page( &eeprom11, MEMORY_ADDRESS );
    Delay_ms ( 1000 );
    error_flag = eeprom11_page_write( &eeprom11, MEMORY_ADDRESS, tx_data );
    if ( EEPROM11_OK == error_flag )
    {
        log_printf( &logger, " Write data: %s \r\n", tx_data );
    }
    else
    {
        log_error( &logger, " Write operation failed!!! " );
    }
    Delay_ms ( 1000 );

    error_flag = eeprom11_generic_read( &eeprom11, MEMORY_ADDRESS, rx_data, 15 );
    if ( EEPROM11_OK == error_flag )
    {
        log_printf( &logger, "Read data: %s \r\n", rx_data );
    }
    else
    {
        log_error( &logger, " Write operation failed!!! " );
    }
    log_printf( &logger, " - - - - - - - - - - - \r\n" );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.EEPROM11

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Charger 9 click

5

Charger 9 click is a Li-Ion (Li+, Li-Po) battery charger, capable of charging one, two or three battery cells. It is based on the MAX1757, an integrated Li+ battery charger with many features that allow safe and reliable charging.

[Learn More]

LED Driver 8 Click

0

LED Driver 8 Click is a compact add-on board optimized for dimming and blinking 32 mA RGBA LEDs. This board features the PCA9957HNMP, 24-channel SPI-compatible constant current LED driver from NXP Semiconductors.

[Learn More]

RS232 3 Click

0

RS232 3 Click is a compact add-on board representing a universal usable RS232 transceiver. This board features the SP3221E, a low-power RS232 transceiver from MaxLinear. The SP3221E uses an internal high-efficiency, charge-pump power supply and is compliant with EIA/TIA-232-F standards when powered by any of the mikroBUS™ power rails. The AUTO ON-LINE® feature allows the SP3221E to automatically Wake-Up from a Shutdown state when an RS232 cable is connected and a peripheral device is turned on. When not connected or not in use, the SP3221E will automatically shut down, drawing less supply current.

[Learn More]