TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141825 times)
  2. FAT32 Library (74956 times)
  3. Network Ethernet Library (59317 times)
  4. USB Device Library (49308 times)
  5. Network WiFi Library (45107 times)
  6. FT800 Library (44675 times)
  7. GSM click (31287 times)
  8. mikroSDK (30214 times)
  9. microSD click (27664 times)
  10. PID Library (27563 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

EasyPull Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: Adapter

Downloaded: 161 times

Not followed.

License: MIT license  

EasyPull Click is a compact add-on board designed to easily configure mikroBUS™ signals into pull-up or pull-down states, perfect for various applications. It features a universal setup with 4.7kΩ resistors to ensure stable performance across vital communication lines such as SPI, UART, I2C, and standard mikroBUS™ signals (AN, RST, PWM, INT).

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "EasyPull Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "EasyPull Click" changes.

Do you want to report abuse regarding "EasyPull Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


EasyPull Click

EasyPull Click is a compact add-on board designed to easily configure mikroBUS™ signals into pull-up or pull-down states, perfect for various applications. It features a universal setup with 4.7kΩ resistors to ensure stable performance across vital communication lines such as SPI, UART, I2C, and standard mikroBUS™ signals (AN, RST, PWM, INT).

easypull_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Dec 2023.
  • Type : GPIO type

Software Support

We provide a library for the EasyPull Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for EasyPull Click driver.

Standard key functions :

  • easypull_cfg_setup Config Object Initialization function.

    void easypull_cfg_setup ( easypull_cfg_t *cfg );
  • easypull_init Initialization function.

    err_t easypull_init ( easypull_t *ctx, easypull_cfg_t *cfg );

Example key functions :

  • easypull_get_an_pin This function reads the state of the AN pin of EasyPull Click board.

    uint8_t easypull_get_an_pin ( easypull_t *ctx );
  • easypull_get_rst_pin This function reads the state of the RST pin of EasyPull Click board.

    uint8_t easypull_get_rst_pin ( easypull_t *ctx );
  • easypull_get_cs_pin This function reads the state of the CS pin of EasyPull Click board.

    uint8_t easypull_get_cs_pin ( easypull_t *ctx );

Example Description

This example demonstrates the use of EasyPull Click boards.

The demo application is composed of two sections :

Application Init

Initializes the driver and USB UART logger.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    easypull_cfg_t easypull_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    easypull_cfg_setup( &easypull_cfg );
    EASYPULL_MAP_MIKROBUS( easypull_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == easypull_init( &easypull, &easypull_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

It checks the state of the pins and displays their state on the USB UART.

void application_task ( void ) 
{
    if ( EASYPULL_PIN_STATE_HIGH == easypull_get_an_pin( &easypull ) )
    {
        log_printf( &logger, " AN pin state: HIGH \n" );
    }
    else
    {
        log_printf( &logger, " AN pin state: LOW \n" );
    }

    if ( EASYPULL_PIN_STATE_HIGH == easypull_get_rst_pin( &easypull ) )
    {
        log_printf( &logger, " RST pin state: HIGH \n" );
    }
    else
    {
        log_printf( &logger, " RST pin state: LOW \n" );
    }

    if ( EASYPULL_PIN_STATE_HIGH == easypull_get_cs_pin( &easypull ) )
    {
        log_printf( &logger, " CS pin state: HIGH \n" );
    }
    else
    {
        log_printf( &logger, " CS pin state: LOW \n" );
    }

    if ( EASYPULL_PIN_STATE_HIGH == easypull_get_pwm_pin( &easypull ) )
    {
        log_printf( &logger, " PWM pin state: HIGH \n" );
    }
    else
    {
        log_printf( &logger, " PWM pin state: LOW \n" );
    }

    if ( EASYPULL_PIN_STATE_HIGH == easypull_get_int_pin( &easypull ) )
    {
        log_printf( &logger, " INT pin state: HIGH \n" );
    }
    else
    {
        log_printf( &logger, " INT pin state: LOW \n" );
    }
    log_printf( &logger, "- - - - - - - - - - - - - \r\n" );
    Delay_ms ( 1000 );

}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.EasyPull

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

LPG Click

0

LPG Click carries an MQ-5 sensor for detecting liquefied petroleum gas leakage. The gas sensing layer on the sensor unit is made of Tin dioxide (SnO2), which has lower conductivity in clean air.

[Learn More]

Expand 4 click

5

This is a sample program that demonstrates the usage of the ST's TPIC6A595 shift register. In this example, the LED pin mask is transferred via SPI bus to the TPIC6A595 shift register and LEDs connected to D0-D7 pins are lit accordingly.

[Learn More]

Temp-Log 5 Click

0

Temp-Log 5 Click is a temperature measuring Click board™ featuring the CAT34TS02, an accurate temperature sensor IC with integrated Serial Presence Detect EEPROM. Temperature Sensor measures and store temperatures at least 10 times in second. Temperature measurement results can be retrieved by the host MCU via I2C interface, and are compared to critical limits stored into internal registers. It also features programmable event output function and supports three modes.

[Learn More]