TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139568 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57256 times)
  4. USB Device Library (47631 times)
  5. Network WiFi Library (43221 times)
  6. FT800 Library (42566 times)
  7. GSM click (29932 times)
  8. mikroSDK (28292 times)
  9. PID Library (26934 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

H-Bridge Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.4

mikroSDK Library: 2.0.0.0

Category: Brushed

Downloaded: 42 times

Not followed.

License: MIT license  

H-Bridge Click is a high-efficiency dual H-bridge driver Click board™, capable of providing reasonably high current while driving the connected load with up to 7V. Since the used driver IC has two full H-bridge channels, this Click board™ is an ideal solution for driving smaller bipolar stepper motors. H-Bridge Click provides driving in both directions, with an addition of the brake mode, and the high impedance mode (Hi-Z). Overshoot current suppression algorithm protects the output stages from being damaged if both high-side and low-side MOSFETs on a single H-bridge channel become conductive.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "H-Bridge Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "H-Bridge Click" changes.

Do you want to report abuse regarding "H-Bridge Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


H-Bridge Click

H-Bridge Click is a high-efficiency dual H-bridge driver Click board™, capable of providing reasonably high current while driving the connected load with up to 7V. Since the used driver IC has two full H-bridge channels, this Click board™ is an ideal solution for driving smaller bipolar stepper motors. H-Bridge Click provides driving in both directions, with an addition of the brake mode, and the high impedance mode (Hi-Z). Overshoot current suppression algorithm protects the output stages from being damaged if both high-side and low-side MOSFETs on a single H-bridge channel become conductive.

hbridge_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Feb 2024.
  • Type : GPIO type

Software Support

We provide a library for the H-Bridge Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for H-Bridge Click driver.

Standard key functions :

  • hbridge_cfg_setup Config Object Initialization function.

    void hbridge_cfg_setup ( hbridge_cfg_t *cfg );
  • hbridge_init Initialization function.

    err_t hbridge_init ( hbridge_t *ctx, hbridge_cfg_t *cfg );

Example key functions :

  • hbridge_set_step_mode This function sets the step mode resolution settings in @b ctx->step_mode.

    void hbridge_set_step_mode ( hbridge_t *ctx, uint8_t mode );
  • hbridge_set_direction This function sets the motor direction to clockwise or counter-clockwise in @b ctx->direction.

    void hbridge_set_direction ( hbridge_t *ctx, uint8_t dir );
  • hbridge_drive_motor This function drives the motor for the specific number of steps at the selected speed.

    void hbridge_drive_motor ( hbridge_t *ctx, uint32_t steps, uint8_t speed );

Example Description

This example demonstrates the use of the H-Bridge Click board by driving the motor in both directions for a desired number of steps.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    hbridge_cfg_t hbridge_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    hbridge_cfg_setup( &hbridge_cfg );
    HBRIDGE_MAP_MIKROBUS( hbridge_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == hbridge_init( &hbridge, &hbridge_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Drives the motor clockwise for 200 full steps and then counter-clockiwse for 400 half steps with a 2 seconds delay before changing the direction. All data is being logged on the USB UART where you can track the program flow.

void application_task ( void )
{
    hbridge_set_step_mode ( &hbridge, HBRIDGE_MODE_FULL_STEP );
    hbridge_set_direction ( &hbridge, HBRIDGE_DIR_CW );
    hbridge_drive_motor ( &hbridge, 200, HBRIDGE_SPEED_MEDIUM );
    log_printf ( &logger, " Move 200 full steps clockwise\r\n\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    hbridge_set_step_mode ( &hbridge, HBRIDGE_MODE_HALF_STEP );
    hbridge_set_direction ( &hbridge, HBRIDGE_DIR_CCW );
    hbridge_drive_motor ( &hbridge, 400, HBRIDGE_SPEED_FAST );
    log_printf ( &logger, " Move 400 half steps counter-clockwise\r\n\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.HBridge

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Air quality 4 Click

0

Air quality 4 Click is an advanced air quality sensing device that combines multiple metal-oxide sensing elements on a chip to provide detailed information of the air quality parameters.

[Learn More]

Color 3 click

1

Color 3 click is a mikroBUS add-on board with a TCS3771 color sensor (also known as a light-to-digital converter) and a narrow beam Infrared LED. The circuit can also function as a proximity sensor. TCS3771 is a RGBC sensor: it can detect Red, Green, Blue and clear light. The IC performs well under a variety of lighting conditions.

[Learn More]

AnyNet 3G-EA Click

0

AnyNet 3G-EA Click is a cellular to AWS gateway device, which provides developers with the complete solution for various IoT applications, by using the AWS IoT and Cloud Storage services for the data storage, analyzing and processing. AnyNet Click board™ provides a secure connection with the AWS over the air (OTA), by utilizing the Quectel UG95-EA 3G module, offering worldwide UMTS/HSPA and GSM/GPRS/EDGE coverage Eseye ES4623 embedded SIM card, that can work with more than 235 cellular operators from all over the world. An Eseye embedded sim card can work with more than 235 cellular operators from all over the world. The AnyNet 3G Click can be used as an AWS IoT button with almost no configuration.

[Learn More]