TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (403 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (132 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140975 times)
  2. FAT32 Library (73517 times)
  3. Network Ethernet Library (58324 times)
  4. USB Device Library (48511 times)
  5. Network WiFi Library (44135 times)
  6. FT800 Library (43689 times)
  7. GSM click (30547 times)
  8. mikroSDK (29295 times)
  9. PID Library (27220 times)
  10. microSD click (26931 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Stepper 10 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.4

mikroSDK Library: 2.0.0.0

Category: Stepper

Downloaded: 79 times

Not followed.

License: MIT license  

Stepper 10 Click is a two-phase bipolar stepping motor driver capable of controlling one stepper motor with PWM constant current drive. Click's featured chip TB67S128FTG, from Toshiba Semiconductor, fabricated with BiCD process with an output rating of 50V/5A and a built-in decoder can supply the motor with voltage of up to 44V. Toshiba's innovative technology process results in low-power consumption with low on-resistance (0.25Ω) on the integrated MOSFET output stage. The stepper motor can be driven in both directions from full step to 1/128 micro-steps.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Stepper 10 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Stepper 10 Click" changes.

Do you want to report abuse regarding "Stepper 10 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Stepper 10 Click

Stepper 10 Click is a two-phase bipolar stepping motor driver capable of controlling one stepper motor with PWM constant current drive. Click's featured chip TB67S128FTG, from Toshiba Semiconductor, fabricated with BiCD process with an output rating of 50V/5A and a built-in decoder can supply the motor with voltage of up to 44V. Toshiba's innovative technology process results in low-power consumption with low on-resistance (0.25Ω) on the integrated MOSFET output stage. The stepper motor can be driven in both directions from full step to 1/128 micro-steps.

stepper10_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Mar 2024.
  • Type : I2C/SPI type

Software Support

We provide a library for the Stepper 10 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Stepper 10 Click driver.

Standard key functions :

  • stepper10_cfg_setup Config Object Initialization function.

    void stepper10_cfg_setup ( stepper10_cfg_t *cfg );
  • stepper10_init Initialization function.

    err_t stepper10_init ( stepper10_t *ctx, stepper10_cfg_t *cfg );
  • stepper10_default_cfg Click Default Configuration function.

    err_t stepper10_default_cfg ( stepper10_t *ctx );

Example key functions :

  • stepper10_set_direction This function sets the motor direction by setting the DIR pin logic state.

    void stepper10_set_direction ( stepper10_t *ctx, uint8_t dir );
  • stepper10_set_step_mode This function sets the step mode resolution settings.

    err_t stepper10_set_step_mode ( stepper10_t *ctx, uint8_t mode );
  • stepper10_drive_motor This function drives the motor for the specific number of steps at the selected speed.

    err_t stepper10_drive_motor ( stepper10_t *ctx, uint32_t steps, uint8_t speed );

Example Description

This example demonstrates the use of the Stepper 10 Click board by driving the motor in both directions for a desired number of steps.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    stepper10_cfg_t stepper10_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    stepper10_cfg_setup( &stepper10_cfg );
    STEPPER10_MAP_MIKROBUS( stepper10_cfg, MIKROBUS_1 );
    err_t init_flag = stepper10_init( &stepper10, &stepper10_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( STEPPER10_ERROR == stepper10_default_cfg ( &stepper10 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Drives the motor clockwise for 200 full steps and then counter-clockiwse for 200 half steps and 400 quarter steps with 2 seconds delay on driving mode change. All data is being logged on the USB UART where you can track the program flow.

void application_task ( void )
{
    log_printf ( &logger, " Move 200 full steps clockwise, speed: slow\r\n\n" );
    stepper10_set_direction ( &stepper10, STEPPER10_DIR_CW );
    stepper10_set_step_mode ( &stepper10, STEPPER10_MODE_FULL_STEP );
    stepper10_drive_motor ( &stepper10, 200, STEPPER10_SPEED_SLOW );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf ( &logger, " Move 200 half steps counter-clockwise, speed: medium\r\n\n" );
    stepper10_set_direction ( &stepper10, STEPPER10_DIR_CCW );
    stepper10_set_step_mode ( &stepper10, STEPPER10_MODE_HALF_STEP );
    stepper10_drive_motor ( &stepper10, 200, STEPPER10_SPEED_MEDIUM );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf ( &logger, " Move 400 quarter steps counter-clockwise, speed: fast\r\n\n" );
    stepper10_set_direction ( &stepper10, STEPPER10_DIR_CCW );
    stepper10_set_step_mode ( &stepper10, STEPPER10_MODE_QUARTER_STEP );
    stepper10_drive_motor ( &stepper10, 400, STEPPER10_SPEED_FAST );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Stepper10

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

SolidSwitch 3 Click

0

SolidSwitch 3 Click is a compact add-on board that contains a load switching device. This board features the BD8LB600FS-C, an automotive eight-channel low-side switch from Rohm Semiconductor. Every switch is controlled via an SPI interface and includes an N-channel MOSFET that supports a maximum current of 1A. The BD8LB600FS-C also has built-in protection circuits, namely the overcurrent, the thermal shutdown, the open-load detection, and the voltage lock-out circuits. Moreover, this device also possesses a diagnostic output function during abnormal detection.

[Learn More]

PLL click

5

PLL click is a frequency multiplier which uses the Phase-Locked Loop (PLL) techniques to provide a high-frequency clock output from a cheap, standard fundamental mode crystal oscillator.

[Learn More]

DAC 16 Click

0

DAC 16 Click is a compact add-on board, a digital-to-analog converter (DAC) designed for precise voltage and current output applications. This board features the DAC63204-Q1, an automotive-qualified 12-bit DAC from Texas Instruments. This Click board™ features four output channels with flexible configuration options, including adjustable voltage gains and selectable current ranges from ±25μA to ±250μA. It also supports both internal and external voltage references and offers a Hi-Z power-down mode for enhanced protection. Communication with the host MCU is enabled through either a 4-wire SPI or I2C interface, with configurable I2C addresses and a general-purpose I/O pin for additional functionality.

[Learn More]