TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139566 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57256 times)
  4. USB Device Library (47631 times)
  5. Network WiFi Library (43220 times)
  6. FT800 Library (42566 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26933 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

GainAMP 2 click

Rating:

0

Author: MIKROE

Last Updated: 2018-03-13

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: Amplifier

Downloaded: 5765 times

Not followed.

License: MIT license  

GainAMP 2 click is a 6-channel programmable gain amplifier, used to amplify signals on any of the 6 non-inverting input channels up to 32x, in eight discrete steps. 

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "GainAMP 2 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "GainAMP 2 click" changes.

Do you want to report abuse regarding "GainAMP 2 click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

GainAMP 2 Click

GainAMP 2 Click

Native view of the GainAMP Click.

View full image
GainAMP 2 Click

GainAMP 2 Click

Front and back view of the GainAMP 2 Click.

View full image

Library Description

The library carries a single function which allows complete control over GainAMP 2 click.

Key functions

gainamp2_writeCommand- Writes desired command data

Examples Description

The demo application shows the simplicity of usage.
The application is composed of two sections :

  • System Initialization - Initializes CS pin as output and SPI module
  • Application Initialization - Setups GainAMP 2 click channel 4 to amplify the signal 4 times
applicationInit()
{
    gainamp2_spiDriverInit( (T_GAINAMP2_P)&_MIKROBUS1_GPIO, (T_GAINAMP2_P)&_MIKROBUS1_SPI );

// SETUP GAIN +4 on CHANNEL
    gainamp2_writeCommand( _GAINAMP2_WRITE_INS | _GAINAMP2_CH, _GAINAMP2_CH4 );
    gainamp2_writeCommand( _GAINAMP2_WRITE_INS | _GAINAMP2_GAIN, _GAINAMP2_GAIN_4X );

    mikrobus_logWrite( "Channel 4 - aplified 4x", _LOG_LINE );
}

Additional notes and information

Depending on the development board you are using, you may need USB UART click,  USB UART 2 click or  RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

 

ALSO FROM THIS AUTHOR

LED Driver 12 Click

0

LED Driver 12 Click is a compact add-on board that simplifies the control of multiple LEDs. This board features the PCA9532, a 16-bit I2C-configurable I/O expander optimized for dimming LEDs in 256 discrete Red/Green/Blue (RGB) steps from NXP Semiconductors. The PCA9532 offers high efficiency, supporting up to 16 LED channels and delivering a maximum of up to 25mA of LED current per channel. It contains an internal oscillator with two user-programmable blink rates and duty cycles coupled to the output PWM. Any bits not used for controlling the LEDs can be used for GPIO expansion, which provides a simple solution when additional I/O is needed for some sensors, push-buttons, or alarm monitoring. This Click board™ is suitable for color mixing and backlight application for amusement products, LED status signalization, home automation projects, and many more.

[Learn More]

CAN FD click

5

CAN FD Click is a transceiver designed for HS CAN networks up to 5 Mbit/s in automotive and industrial applications. As an interface between the physical bus layer and the CAN protocol controller, the TLE9252V drives the signals to the bus and protects the microcontroller against interferences generated within the network.

[Learn More]

Brushless 3 Click

0

Brushless 3 Click carries the DRV10983, a three-phase sensorless motor driver with integrated power MOSFETs. When an external power supply is applied, you can drive a brushless DC motor through the PWM pin, AN pin or I2C interface.

[Learn More]