TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142031 times)
  2. FAT32 Library (75257 times)
  3. Network Ethernet Library (59477 times)
  4. USB Device Library (49497 times)
  5. Network WiFi Library (45271 times)
  6. FT800 Library (44888 times)
  7. GSM click (31421 times)
  8. mikroSDK (30421 times)
  9. microSD click (27781 times)
  10. PID Library (27615 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Buck-Boost 3 click

Rating:

6

Author: MIKROE

Last Updated: 2019-01-09

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: Buck-Boost

Downloaded: 4710 times

Not followed.

License: MIT license  

The Buck-Boost 3 click is a voltage converter/regulator, which is able to provide a regulated voltage of 3.3V or 5V on the output, even when the input voltage drops under 3V.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Buck-Boost 3 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Buck-Boost 3 click" changes.

Do you want to report abuse regarding "Buck-Boost 3 click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

Buck-Boost 3 click

Buck-Boost 3 click

Native view of the Buck-Boost 3 click board.

View full image
Buck-Boost 3 click

Buck-Boost 3 click

Front and back view of the Buck-Boost 3 click board.

View full image

Library Description

The library includes features to enable or disable devices and functions to check if the input voltage is below the operating voltage.

Key functions:

  • void buckboost3_enable(uint8_t state) - Function for enable/disable device
  • uint8_t buckboost3_getInterruptState() - Function for get Intterupt pin state

Examples description

The application is composed of the three sections :

  • System Initialization - Sets INT pin as INPUT and CS pin as OUTPUT
  • Application Initialization - Initialization driver init and enable device
  • Application Task - (code snippet) - It checks if the input voltage is below the operating voltage.
void applicationTask()
{
    uint8_t PGOOD_state;
    
    PGOOD_state = buckboost3_getInterruptState();
    if (PGOOD_state == 0)
    {
        mikrobus_logWrite(" Low input voltage !!!", _LOG_LINE);
    }
    Delay_ms( 1000 );
}

Other mikroE Libraries used in the example:

  • GPIO

Additional notes and information

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

RMS to DC click

7

RMS to DC click is a Click board that is used to convert the RMS of the input signal into a DC voltage, with a value directly readable over the I2C interface. The Click board is equipped with the LTC1968, an RMS-to-DC converter IC, which outputs an analog voltage depending on the RMS value of the input signal.

[Learn More]

mikroSDK

5

mikroSDK is the new software development kit used to bridge the gap between different development systems. Once developed, the code will work on any hardware platform which has mikroBUS and is supported by the mikroSDK. Easy to start, fast to learn, time saving, and open source - we designed mikroSDK with developers in mind.

[Learn More]

Brushless 20 Click

0

Brushless 20 Click is a compact add-on board that controls brushless DC (BLDC) motors with any MCU. This board features the DRV8313, a fully integrated three-phase BLDC motor driver from Texas Instruments. It provides three individually controllable half-H-bridge drivers intended to drive a three-phase BLDC motor, solenoids, or other loads. Each output driver channel consists of N-channel power MOSFETs configured in a 1/2-H-bridge configuration. Besides, it has a wide operating voltage range from 8V to 60V, alongside several built-in protection circuits such as undervoltage, charge pump faults, overcurrent, and overtemperature.

[Learn More]