TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141305 times)
  2. FAT32 Library (74107 times)
  3. Network Ethernet Library (58718 times)
  4. USB Device Library (48831 times)
  5. Network WiFi Library (44526 times)
  6. FT800 Library (44078 times)
  7. GSM click (30834 times)
  8. mikroSDK (29673 times)
  9. PID Library (27357 times)
  10. microSD click (27252 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Buck-Boost 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.12

mikroSDK Library: 2.0.0.0

Category: Buck-Boost

Downloaded: 335 times

Not followed.

License: MIT license  

The Buck-Boost 3 Click is a voltage converter regulator, which is able to provide a regulated voltage of 3.3V or 5V on the output, even when the input voltage drops under 3V.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Buck-Boost 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Buck-Boost 3 Click" changes.

Do you want to report abuse regarding "Buck-Boost 3 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Buck-Boost 3 Click

The Buck-Boost 3 Click is a voltage converter regulator, which is able to provide a regulated voltage of 3.3V or 5V on the output, even when the input voltage drops under 3V.

buckboost3_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Nov 2019.
  • Type : GPIO type

Software Support

We provide a library for the BuckBoost3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for BuckBoost3 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void buckboost3_cfg_setup ( buckboost3_cfg_t *cfg );

  • Initialization function.

    BUCKBOOST3_RETVAL buckboost3_init ( buckboost3_t ctx, buckboost3_cfg_t cfg );

Example key functions :

  • This function enable/disable device.

    void buckboost3_enable ( buckboost3_t *ctx, uint8_t state );

  • This function gets intterupt pin state.

    uint8_t buckboost3_get_interrupt_state ( buckboost3_t *ctx );

Examples Description

This application sets buck-boost voltages.

The demo application is composed of two sections :

Application Init

Initialization driver init and enable device.

void application_init ( void )
{
    log_cfg_t log_cfg;
    buckboost3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    buckboost3_cfg_setup( &cfg );
    BUCKBOOST3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    buckboost3_init( &buckboost3, &cfg );

    buckboost3_enable ( &buckboost3, BUCKBOOST3_DEVICE_ENABLE );
    log_info( &logger, " Device enabled " );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

Application Task

It checks if the input voltage is below the operating voltage.

void application_task ( void )
{
    if ( !buckboost3_get_interrupt_state( &buckboost3 ) )
    {
        log_error( &logger, " Low input voltage !!!" );
    }
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.BuckBoost3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Ambient 8 click

5

Ambient 8 click is equipped with the ambient light sensor (ALS) IC, providing measurements of the ambient light intensity in a digital format. It utilizes the LTR-329ALS-01, an ALS with the I2C interface.

[Learn More]

Current 4 Click

0

Current 4 Click is a compact add-on board that provides a precise and accurate current sensing solution. This board features the INA250, a bidirectional, zero-drift current-shunt monitor from Texas Instruments.

[Learn More]

GPS 5 Click

0

GPS 5 Click is a compact add-on board that provides users with positioning, navigation, and timing services. This board features the M20050-1, a compact GPS module receiver using the MediaTek MT3333 flash chip, providing a complete GNSS receiver for optimum performance from Antenova. The receiver tracks 3 GNSS constellations concurrently (GPS+Galileo+GLONASS or GPS+Beidou) to considerably enhance location and TTFF (Time-to-first-fix) and has configurable low power modes operating from a 3.3V power supply. In addition to the possibility of using an external antenna, backup power, and various visual indicators, the M20050-1 also has an accurate 0.5ppm TXCO ensuring short TTFF alongside multi-path algorithms, which improves position accuracy in inner-city environments.

[Learn More]