TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142128 times)
  2. FAT32 Library (75426 times)
  3. Network Ethernet Library (59570 times)
  4. USB Device Library (49557 times)
  5. Network WiFi Library (45363 times)
  6. FT800 Library (45005 times)
  7. GSM click (31486 times)
  8. mikroSDK (30569 times)
  9. microSD click (27904 times)
  10. PID Library (27637 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LED Driver 7 Click

Rating:

5

Author: MIKROE

Last Updated: 2020-01-09

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: LED Drivers

Downloaded: 4108 times

Not followed.

License: MIT license  

LED Driver 7 click is a Click boardâ„¢ equipped with the LTC3490, single cell 350mA LED driver from Linear Technology.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LED Driver 7 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LED Driver 7 Click" changes.

Do you want to report abuse regarding "LED Driver 7 Click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

Led Driver 7 click

Led Driver 7 click

Native view of the Led Driver 7 click board.

View full image
Led Driver 7 click

Led Driver 7 click

Front and back view of the Led Driver 7 click board.

View full image

Library Description

Library provides full control of the LED's illumination. User can change the LED's brightness and apply "One Time Programming" with write function, or check the wiper and OTB bits with read function.

Key functions:

  • void leddriver7_write ( uint8_t cmd_byte, uint8_t pos ); - Function sets command byte and potentiometer position.
  • uint8_t leddriver7_read ( ); - Function reads single byte of data from output register.

Examples description

The application is composed of three sections :

  • System Initialization - Initializes I2Ca nd LOG modules.
  • Application Initialization - Initalizes I2C driver and writes an initial log.
  • Application Task - This example demonstrates the use of LED Driver 7 Click board, by cycling wiper positions of AD5171 Digital Potentiometer.
void application_task ( )
{
    for ( n_pos = 12; n_pos < pos_num; n_pos++ )
    {
        leddriver7_write ( LEDDRIVER7_NORM_OP_MODE, n_pos );
        ByteToStr( n_pos, test_log );
        mikrobus_logWrite( "Position :", _LOG_TEXT );
        mikrobus_logWrite( test_log, _LOG_LINE );
        Delay_ms( 500 );
    }
}

Other mikroE Libraries used in the example:

  • I2C
  • UART
  • Conversions

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

TempHum 6 Click

0

Temp&Hum 6 Click is a smart temperature and humidity sensing Click board™, packed with features that allow easy and simple integration into any design.

[Learn More]

Stepper 24 Click

0

Stepper 24 Click is a compact add-on board designed to drive small stepping motors in consumer electronics and industrial equipment applications. This board features the TB67S589FTG, a BiCD constant-current 2-phase bipolar stepping motor driver IC from Toshiba Semiconductor. Key features include a PWM chopper-type 2-phase bipolar drive system, high withstand voltage of up to 34V operating, and a maximum operating current of 2.7A per phase. The board also integrates safety mechanisms such as over-temperature, over-current, and low-supply voltage detection. Additional control is provided by the PCA9555A port expander via I2C, enabling functions like decay and torque modes, step resolution settings, and many more.

[Learn More]

RS232 Click

0

RS232 Click provides an interface between the TTL/CMOS logic levels commonly used on microcontrollers and the RS-232 bus.

[Learn More]