We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.16
mikroSDK Library: 2.0.0.0
Category: Rotary encoder
Downloaded: 235 times
Not followed.
License: MIT license
Knob G Click features a combination of high-quality quadrature rotary encoder, and a LED ring composed of 24 individual green LEDs.
Do you want to subscribe in order to receive notifications regarding "Knob Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "Knob Click" changes.
Do you want to report abuse regarding "Knob Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
3134_knob_click.zip [642.05KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
Knob Click features a combination of high-quality quadrature rotary encoder, and a LED ring composed of 24 individual green LEDs.
We provide a library for the Knob Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for Knob Click driver.
Config Object Initialization function.
void knob_cfg_setup ( knob_cfg_t *cfg );
Initialization function.
KNOB_RETVAL knob_init ( knob_t ctx, knob_cfg_t cfg );
Click Default Configuration function.
void knob_default_cfg ( knob_t *ctx );
Functions for get Encoder position
void knob_get_encoder_position ( knob_t ctx, int32_t position, uint8_t *dir );
Functions for set led state(PWM on the LED)
void knob_set_led_state ( knob_t *ctx, uint8_t led, uint8_t state );
Functions for get SW pin(switch button) state
uint8_t knob_get_sw_button_state( knob_t *ctx );
The demo application displays different types of LED controls and encoder position readings.
The demo application is composed of two sections :
Configuring clicks and log objects. Settings the Click in the default configuration.
void application_init ( void )
{
log_cfg_t log_cfg;
knob_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
knob_cfg_setup( &cfg );
KNOB_MAP_MIKROBUS( cfg, MIKROBUS_1 );
knob_init( &knob, &cfg );
knob_reset( &knob );
Delay_ms ( 300 );
knob_default_cfg( &knob );
}
The Task application has 3 test modes:
- The first example is setting BRIGHTNESS on all LEDs.
- Other examples put the LED in the position read from the encoder.
- The third example sets the LED to be read while the encoder registers the clockwise movement and turn off those LEDs that the encoder reads when moving in a counterclockwise direction.
- The example is changed by pressing the SW button
void application_task ( void )
{
uint8_t cnt;
uint8_t direction;
// Task implementation.
knob_get_encoder_position( &knob, &new_position, &direction );
if ( knob_get_sw_button_state( &knob ) == 0 )
{
sw_state++;
if ( sw_state >= 3 ) sw_state = 0;
knob_set_brightness( &knob, KNOB_BRIGHTNESS_ALL_LED, 0x00 );
Delay_ms ( 300 );
}
// Logs position
if ( new_position != old_position )
{
log_printf( &logger, "** EnCoder position : %d ", new_position );
}
old_position = new_position;
switch ( sw_state )
{
// Brightness
case 0:
{
cnt++;
if ( cnt > 127 )
{
cnt = 0;
}
knob_set_brightness( &knob, KNOB_BRIGHTNESS_ALL_LED, cnt );
Delay_ms ( 15 );
break;
}
// Encoder with one led
case 1:
{
if ( new_position > 24 )
{
knob_set_encoder_start_position( &knob, 1 );
}
if ( new_position < 1 )
{
knob_set_encoder_start_position( &knob, 24 );
}
if (direction == 1)
{
knob_set_led_state( &knob, new_position, KNOB_LED_ON );
knob_set_led_state( &knob, new_position - 1, KNOB_LED_OFF );
}
else
{
knob_set_led_state( &knob, new_position, KNOB_LED_ON );
knob_set_led_state( &knob, new_position + 1, KNOB_LED_OFF );
}
Delay_1ms();
break;
}
// Encoder with all led
case 2:
{
if ( new_position > 24 )
{
knob_set_encoder_start_position( &knob, 1 );
}
if ( new_position < 1 )
{
knob_set_encoder_start_position( &knob, 24 );
}
if ( direction == 1 )
{
knob_set_led_state( &knob, new_position, KNOB_LED_ON );
}
else
{
knob_set_led_state( &knob, new_position + 1, KNOB_LED_OFF);
}
Delay_1ms();
break;
}
}
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.