TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (387 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (120 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140169 times)
  2. FAT32 Library (72625 times)
  3. Network Ethernet Library (57645 times)
  4. USB Device Library (47958 times)
  5. Network WiFi Library (43555 times)
  6. FT800 Library (42942 times)
  7. GSM click (30141 times)
  8. mikroSDK (28672 times)
  9. PID Library (27058 times)
  10. microSD click (26553 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Thermo K Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.19

mikroSDK Library: 2.0.0.0

Category: Temperature & humidity

Downloaded: 359 times

Not followed.

License: MIT license  

THERMO K Click carries the MCP9600 IC from Microchip. Depending on the type of probe it uses the Click can measure temperatures from −200 °C to +1372 °C.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Thermo K Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Thermo K Click" changes.

Do you want to report abuse regarding "Thermo K Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Thermo K Click

THERMO K Click carries the MCP9600 IC from Microchip. Depending on the type of probe it uses the Click can measure temperatures from −200 °C to +1372 °C.

thermok_click.png

Click Product page


Click library

  • Author : Katarina Perendic
  • Date : nov 2019.
  • Type : I2C type

Software Support

We provide a library for the ThermoK Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for ThermoK Click driver.

Standard key functions :

  • Config Object Initialization function.

    void thermok_cfg_setup ( thermok_cfg_t *cfg );

  • Initialization function.

    THERMOK_RETVAL thermok_init ( thermok_t ctx, thermok_cfg_t cfg );

Example key functions :

  • Temperature data

    float thermok_get_temperature ( thermok_t *ctx, uint8_t reg, uint8_t temp_format );

  • Get status

    void thermok_get_status ( thermok_t ctx, thermok_alert_t status );

  • Functions for read device info

    uint16_t thermok_get_device_info ( thermok_t *ctx );

Examples Description

Demo application shows basic temperature reading using Thermo K Click.

The demo application is composed of two sections :

Application Init

Configuring clicks and log objects. Reads the device ID and also checks the Click and MCU communication.

void application_init ( void )
{
    log_cfg_t log_cfg;
    thermok_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    thermok_cfg_setup( &cfg );
    THERMOK_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    thermok_init( &thermok, &cfg );

    // Check communication and reads device ID

    device_info = thermok_get_device_info( &thermok );

    if ( ( device_info >> 8 ) == THERMOK_DEVICE_ID )
    {
        log_info(&logger, "---- Communication OK!!! ----" );
    }
    else
    {
        log_info(&logger, "---- Communication ERROR!!! ----" );
        for ( ; ; );
    }
    Delay_1sec( );
}

Application Task

Reads Temperature data(Type K probe) and this data logs to USBUART every 500ms.

void application_task ( void )
{
    float temperature;

    //  Task implementation.

    temperature = thermok_get_temperature( &thermok, 
                                           THERMOK_REG_HOT_JUNCTION_TEMP_THR, 
                                           THERMOK_TEMP_IN_CELSIUS );
    log_printf( &logger, ">> Temperature is %.2f C\r\n", temperature );

    Delay_ms ( 1000 );
    Delay_ms ( 500 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.ThermoK

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Hall Current 14 Click

0

Hall Current 14 Click is a compact add-on board that contains a precise solution for AC/DC current sensing. This board features the MCS1801, a fully integrated Hall-effect-based isolated linear current sensor designed for the current range of ±25A from Monolithic Power Systems (MPS). The galvanic isolation between the pins of the primary copper conductive path and the sensor leads allows the MCS1801 to replace optoisolators or other isolation devices. Applied current flowing through this copper conduction path generates a magnetic field that the differential Hall sensors convert into a proportional voltage, where after that, the user is given the option to process the output voltage as an analog or digital value.

[Learn More]

Magnetic rotary click

6

Magnetic rotary click is a very accurate position sensing Click board which utilizes the HMC1512, a magnetic field displacement sensor IC.

[Learn More]

6DOF IMU 5 Click

0

6DOF IMU 5 Click features 7-Axis ICM-20789 chip from TDK, an integrated 6-axis inertial device that combines a 3-axis gyroscope, 3-axis accelerometer, and an ultra-low noise MEMS capacitive pressure sensor.

[Learn More]