TOP Contributors

  1. MIKROE (2751 codes)
  2. Alcides Ramos (372 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139058 times)
  2. FAT32 Library (71588 times)
  3. Network Ethernet Library (56988 times)
  4. USB Device Library (47330 times)
  5. Network WiFi Library (43006 times)
  6. FT800 Library (42297 times)
  7. GSM click (29764 times)
  8. mikroSDK (27874 times)
  9. PID Library (26858 times)
  10. microSD click (26129 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

6DOF IMU 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 193 times

Not followed.

License: MIT license  

6DOF IMU 4 Click is an advanced 6-axis motion tracking Click board™, which utilizes the ICM-20602, a high-performance integrated motion sensor, equipped with a 3-axis gyroscope, and a 3-axis accelerometer.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "6DOF IMU 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "6DOF IMU 4 Click" changes.

Do you want to report abuse regarding "6DOF IMU 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


c6DOF IMU 4 Click

6DOF IMU 4 Click is an advanced 6-axis motion tracking Click board™, which utilizes the ICM-20602, a high-performance integrated motion sensor, equipped with a 3-axis gyroscope and a 3-axis accelerometer.

6dofimu4_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C/SPI type

Software Support

We provide a library for the c6DofImu4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for c6DofImu4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void c6dofimu4_cfg_setup ( c6dofimu4_cfg_t *cfg );

  • Initialization function.

    C6DOFIMU4_RETVAL c6dofimu4_init ( c6dofimu4_t ctx, c6dofimu4_cfg_t cfg );

  • Click Default Configuration function.

    void c6dofimu4_default_cfg ( c6dofimu4_t *ctx );

Example key functions :

  • Sync Pin Setting function

    void c6dofimu4_set_sync_pin ( c6dofimu4_t *ctx, uint8_t state );

  • Data Get function

    void c6dofimu4_get_data ( c6dofimu4_t ctx, c6dofimu4_axis_t accel_out, c6dofimu4_axis_t gyro_out, int8_t temp_out );

  • Full Scale Setting function

    uint8_t c6dofimu4_set_fsr ( c6dofimu4_t *ctx, uint8_t gyro_resol, uint8_t accel_resol );

Examples Description

This application measures gyroscopic, accelerometer, and temperature data.

The demo application is composed of two sections :

Application Init

Initializes I2C interface and performs a device reset and configurations.


void application_init ( void )
{
    log_cfg_t log_cfg;
    c6dofimu4_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    c6dofimu4_cfg_setup( &cfg );
    C6DOFIMU4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    c6dofimu4_init( &c6dofimu4, &cfg );
    c6dofimu4_reset( &c6dofimu4 );

    c6dofimu4_default_cfg( &c6dofimu4 );
    Delay_ms ( 200 );

    log_printf( &logger, "** 6DOF IMU 4 is initialized **\r\n" );
}

Application Task

Waits until data is ready and then reads the all data registers, accelerometer, gyroscope and temperature data, and shows results to the uart terminal every 500ms.


void application_task ( void )
{
    c6dofimu4_axis_t  accel_data;
    c6dofimu4_axis_t  gyro_data;
    uint8_t data_ready;
    int8_t temperature;

    data_ready = c6dofimu4_get_status( &c6dofimu4, C6DOFIMU4_DATA_RDY_INT_MASK );

    while ( data_ready != C6DOFIMU4_DATA_RDY_INT_OCCURED )
    {
        data_ready = c6dofimu4_get_status( &c6dofimu4, C6DOFIMU4_DATA_RDY_INT_MASK );
    }

    c6dofimu4_get_data( &c6dofimu4, &accel_data, &gyro_data, &temperature );

    log_printf( &logger,"** Accelerometer values :\r\n" );
    log_printf( &logger, "* X-axis : %.2lf g ", accel_data.x );
    log_printf( &logger, "* Y-axis : %.2lf g ", accel_data.y );
    log_printf( &logger, "* Z-axis : %.2lf g ", accel_data.z );
    log_printf( &logger,"\r\n" );

    log_printf( &logger,"** Gyroscope values :\r\n" );
    log_printf( &logger, "* X-axis : %.2lf dps ", gyro_data.x );
    log_printf( &logger, "* Y-axis : %.2lf dps ", gyro_data.y );
    log_printf( &logger, "* Z-axis : %.2lf dps ", gyro_data.z );
    log_printf( &logger,"\r\n" );

    log_printf( &logger, "** Temperature value : %d C\r\n", temperature );
    log_printf( &logger,"------------------------------------------------- \r\n" );

    Delay_ms ( 500 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.6DofImu4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

ECG click

5

This is an ECG (or EKG) machine on a click board. It measures the electrical activity of a beating heart through electrodes taped to the skin. It requires little setup, and the final measurement results can be displayed as an Electrocardiogram using a free PC app.

[Learn More]

Fan 9 Click

0

Fan 9 Click is a compact add-on board designed for high-power fan applications requiring low noise and minimal vibration. This board features the A5932, an automotive-grade three-phase sinusoidal sensorless fan controller from Allegro Microsystems. This board operates with a power supply range of 12V to 42V, using a sinusoidal drive to reduce audible noise and vibration. It features I2C communication, PWM speed control, and a red FLT LED indicator for fault conditions.

[Learn More]

H-Bridge 8 Click

0

H-Bridge 8 Click is a compact add-on board that contains H-bridge current regulator. This board features the MP6519, a monolithic, step-down, current-source driver for applications that require accurate and fast current-response control from Monolithic Power Systems (MPS). It achieves excellent load and line regulation over a wide input supply range up to 28V. The four integrated MOSFET H-bridge control provide a fast dynamic load response and an ultra-high efficiency solution. Complete protection features include load open, load-short protection, over-current protection (OCP), over-temperature protection (OTP), and input over-voltage protection (OVP). This Click board™ is suitable as a current-regulator brushed DC motor/solenoid driver for various applications

[Learn More]