TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (392 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (123 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140516 times)
  2. FAT32 Library (73012 times)
  3. Network Ethernet Library (57996 times)
  4. USB Device Library (48206 times)
  5. Network WiFi Library (43811 times)
  6. FT800 Library (43261 times)
  7. GSM click (30317 times)
  8. mikroSDK (28964 times)
  9. PID Library (27101 times)
  10. microSD click (26701 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

16x12 G Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.25

mikroSDK Library: 2.0.0.0

Category: LED matrix

Downloaded: 298 times

Not followed.

License: MIT license  

16x12 G Click carries a 16x12 LED display and the IS31FL3733 matrix driver. The Click is designed to run on either 3.3V or 5V power supply.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "16x12 G Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "16x12 G Click" changes.

Do you want to report abuse regarding "16x12 G Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


16x12 Click

16x12 G Click carries a 16x12 LED display and the IS31FL3733 matrix driver. The Click is designed to run on either 3.3V or 5V power supply.

16x12g_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Nov 2019.
  • Type : I2C type

Software Support

We provide a library for the 16x12 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for 16x12 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void c16x12_cfg_setup ( c16x12_cfg_t *cfg );

  • Initialization function.

    C16X12_RETVAL c16x12_init ( c16x12_t ctx, c16x12_cfg_t cfg );

  • Click Default Configuration function.

    void c16x12_default_cfg ( c16x12_t *ctx );

Example key functions :

  • Functions for display Image

    void c16x12g_display_image ( c16x12_t ctx, uint16_t pImage );

  • Functions for display one Byte

    void c16x12g_display_byte ( c16x12_t *ctx, char ch );

  • Functions for display text with scroll

    void c16x12g_display_text ( c16x12_t ctx, char p_text, uint8_t n_char, uint8_t speed );

Examples Description

This application draw object with led diodes.

The demo application is composed of two sections :

Application Init

Initialization default device configuration, sets LED mode, configuration ABM and display one character.


void application_init ( void )
{
    log_cfg_t log_cfg;
    c16x12_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    c16x12_cfg_setup( &cfg );
    C16X12_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    c16x12_init( &c16x12, &cfg );

    c16x12g_device_reset( &c16x12 );
    Delay_ms ( 1000 );

    c16x12_default_cfg( &c16x12 );
    c16x12g_set_global_current_control( &c16x12, 255 );
    c16x12g_set_leds_mode( &c16x12, C16X12G_LED_MODE_ABM1 );

    abm_1.time_1     = C16X12G_ABM_T1_840MS;
    abm_1.time_2     = C16X12G_ABM_T2_840MS;
    abm_1.time_3     = C16X12G_ABM_T3_840MS;
    abm_1.time_4     = C16X12G_ABM_T4_840MS;
    abm_1.loop_begin = C16X12G_ABM_LOOP_BEGIN_T1;
    abm_1.loop_end   = C16X12G_ABM_LOOP_END_T3;
    abm_1.loop_times = C16X12G_ABM_LOOP_FOREVER;

    abm_2.time_1     = C16X12G_ABM_T1_210MS;
    abm_2.time_2     = C16X12G_ABM_T2_0MS;
    abm_2.time_3     = C16X12G_ABM_T3_210MS;
    abm_2.time_4     = C16X12G_ABM_T4_0MS;
    abm_2.loop_begin = C16X12G_ABM_LOOP_BEGIN_T1;
    abm_2.loop_end   = C16X12G_ABM_LOOP_END_T3;
    abm_2.loop_times = C16X12G_ABM_LOOP_FOREVER;

    c16x12g_configABM( &c16x12, C16X12G_ABM_NUM_1, &abm_1 );
    c16x12g_startABM( &c16x12 );

    c16x12g_displayByte( &c16x12, 'G' );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    c16x12g_configABM( &c16x12, C16X12G_ABM_NUM_1, &abm_2 );
    c16x12g_startABM( &c16x12 );
}

Application Task

Clear display, display one by one leds, display one character, display image and display text with scroll


void applicationTask ( void )
{
    uint8_t cnt = 0;

    c16x12g_clear_display( &c16x12 );

    // Display point
    for ( cnt = 1; cnt <= 12; cnt++ )
    {
        c16x12g_set_led( &c16x12, cnt, cnt, C16X12G_LED_STATE_ON, C16X12G_STOP_SETTINGS );
        Delay_ms ( 200 );
    }
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    c16x12g_display_byte( &c16x12, 'G' );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    c16x12g_display_image( &c16x12, &demo_image_light[ 0 ] );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    c16x12g_display_image( &c16x12, &demo_image_dark[ 0 ] );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    c16x12g_display_text( &c16x12, &demo_text[ 0 ], 16, scroll_speed );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.16x12

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

USB to I2C 2 Click

0

USB to I2C 2 Click is a compact add-on board that contains a general-purpose USB to I2C serial interface. This board features the FT201X, a full-speed USB to I2C protocol converter from FTDI. The FT201X converts USB2.0 full-speed to an I2C serial interface capable of operating up to 3.4MBit/s, with low power consumption (typical 8mA). The entire USB protocol is handled on the chip itself, where no USB-specific firmware programming is required. It also has a fully-integrated 2048 byte Multi-Time-Programmable (MTP) memory for storing device descriptors and CBUS I/O user-desirable configuration. This Click board™ includes the complete FT-X series feature set and enables USB to be added into a system design quickly and easily over an I2C interface.

[Learn More]

Temp-Hum 3 click

5

Temp-Hum 3 click is a smart environmental temperature and humidity sensor Click board, packed with features, that allows easy and simple integration into any design that requires accurate and reliable humidity and temperature measurements.

[Learn More]

H-Bridge 7 Click

0

H-Bridge 7 Click features flexible motor driver IC for a wide variety of applications, labeled as the DRV8876N. This Click board™ integrates an N-channel H-bridge, charge pump regulator, and protection circuitry. The charge pump improves efficiency by allowing for both high-side and low-side N-channels MOSFETs and 100% duty cycle support. This IC allows the H-Bridge 7 Click to achieve ultra-low quiescent current draw by shutting down most of the internal circuitry with his low-power sleep mode.

[Learn More]