TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142038 times)
  2. FAT32 Library (75262 times)
  3. Network Ethernet Library (59481 times)
  4. USB Device Library (49501 times)
  5. Network WiFi Library (45276 times)
  6. FT800 Library (44895 times)
  7. GSM click (31422 times)
  8. mikroSDK (30421 times)
  9. microSD click (27782 times)
  10. PID Library (27618 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

BUCK 7 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Buck

Downloaded: 463 times

Not followed.

License: MIT license  

Buck 7 Click is a high-efficiency buck (step-down) DC-DC converter, which can provide digitally adjusted step-down voltage on its output while delivering up to 3.5A of current.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "BUCK 7 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "BUCK 7 Click" changes.

Do you want to report abuse regarding "BUCK 7 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


BUCK 7 Click

Buck 7 Click is a high-efficiency buck (step-down) DC-DC converter, which can provide digitally adjusted step-down voltage on its output while delivering up to 3.5A of current.

buck7_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : dec 2019.
  • Type : SPI type

Software Support

We provide a library for the BUCK7 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for BUCK7 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void buck7_cfg_setup ( buck7_cfg_t *cfg );

  • Initialization function.

    BUCK7_RETVAL buck7_init ( buck7_t ctx, buck7_cfg_t cfg );

  • Click Default Configuration function.

    void buck7_default_cfg ( buck7_t *ctx );

Example key functions :

  • Function for settings output voltage.

    void buck7_set_output_voltage ( buck7_t *ctx, uint16_t voltage );

  • Function for enable chip

    void buck7_enable ( buck7_t *ctx );

  • Function for settings chip mode

    void buck7_set_mode ( buck7_t *ctx, uint8_t mode );

Examples Description

This demo application controls the voltage at the output using the BUCK 7 Click.

The demo application is composed of two sections :

Application Init

Initializes Driver init, reset chip, enable chip and set mode

void application_init ( void )
{
    log_cfg_t log_cfg;
    buck7_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    buck7_cfg_setup( &cfg );
    BUCK7_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    buck7_init( &buck7, &cfg );

    buck7_enable( &buck7 );
    buck7_set_mode( &buck7, BUCK7_MODE_PWM );
}

Application Task

Sets output voltage to 5V, 10V, 15V, 20V, 25V every 3 seconds. It is necessary to set the input voltage on 2.7V + maximum output voltage.

void application_task ( )
{
    buck7_set_output_voltage( &buck7, BUCK7_OUT_VOLTAGE_5V );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck7_set_output_voltage( &buck7, BUCK7_OUT_VOLTAGE_10V );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck7_set_output_voltage( &buck7, BUCK7_OUT_VOLTAGE_15V );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck7_set_output_voltage( &buck7, BUCK7_OUT_VOLTAGE_20V );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck7_set_output_voltage( &buck7, BUCK7_OUT_VOLTAGE_25V );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck7_set_output_voltage( &buck7, BUCK7_OUT_VOLTAGE_20V );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck7_set_output_voltage( &buck7, BUCK7_OUT_VOLTAGE_15V );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck7_set_output_voltage( &buck7, 0x0BB8 ); /* 10 V */
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.BUCK7

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Fan 9 Click

0

Fan 9 Click is a compact add-on board designed for high-power fan applications requiring low noise and minimal vibration. This board features the A5932, an automotive-grade three-phase sinusoidal sensorless fan controller from Allegro Microsystems. This board operates with a power supply range of 12V to 42V, using a sinusoidal drive to reduce audible noise and vibration. It features I2C communication, PWM speed control, and a red FLT LED indicator for fault conditions.

[Learn More]

Thermo 22 Click

0

Thermo 22 Click is a compact add-on board that provides an accurate temperature measurement. This board features the TMP75C, a high-precision digital temperature sensor from Texas Instruments. The TMP75C houses an integrated digital temperature sensor with a 12-bit analog-to-digital converter (ADC), a reference circuit, and serial interface logic functions in one package. Characterized by its high accuracy (up to ±0.25°C typical) and high resolution of 0.0625°C, this temperature sensor provides temperature data to the host controller with a configurable I2C interface. This Click board™ is appropriate for thermal management and protection of various consumer, industrial, and environmental applications.

[Learn More]

Gyro 9 Click

0

Gyro 9 Click is a compact add-on board that contains a high-performance gyroscope. This board features the A3G4250D, a MEMS motion sensor from STMicroelectronics. It is a low-power 3-axes digital output gyroscope that provides unprecedented stability at zero rate level and sensitivity over temperature and time and is equipped with an embedded temperature sensor. The gyroscope has a 16-bit rate value data output with an 8-bit compensation temperature data output.

[Learn More]