TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141592 times)
  2. FAT32 Library (74562 times)
  3. Network Ethernet Library (59075 times)
  4. USB Device Library (49099 times)
  5. Network WiFi Library (44842 times)
  6. FT800 Library (44399 times)
  7. GSM click (31067 times)
  8. mikroSDK (29943 times)
  9. microSD click (27504 times)
  10. PID Library (27493 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Buck 13 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Buck

Downloaded: 326 times

Not followed.

License: MIT license  

Buck 13 Click is a high-efficiency step-down converter which provides a highly regulated output voltage derived from the connected power source, rated from 4.5V to 5.5V.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Buck 13 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Buck 13 Click" changes.

Do you want to report abuse regarding "Buck 13 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Buck 13 Click

Buck 13 Click is a high-efficiency step-down converter which provides a highly regulated output voltage derived from the connected power source, rated from 4.5V to 5.5V.

buck13_click.png

Click Product page


Click library

  • Author : Petar Suknjaja
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Buck13 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Buck13 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void buck13_cfg_setup ( buck13_cfg_t *cfg );

  • Initialization function.

    BUCK13_RETVAL buck13_init ( buck13_t ctx, buck13_cfg_t cfg );

  • Click Default Configuration function.

    void buck13_default_cfg ( buck13_t *ctx );

Example key functions :

  • Enables the Buck 13 output.

    void buck13_enable ( buck13_t *ctx, uint8_t pwr_state );

  • Gets the ADC values from the module.

    uint16_t buck13_get_adc( buck13_t *ctx );

  • Gets the output voltage.

    uint16_t buck13_get_voltage( buck13_t *ctx );

Examples Description

This example switches the output of the Buck13 and logs the output voltage on the Vout terminal.

The demo application is composed of two sections :

Application Init

Initializes driver and turns OFF the Buck 13 output as default state.


void application_init ( void )
{
    log_cfg_t log_cfg;
    buck13_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    buck13_cfg_setup( &cfg );
    BUCK13_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    buck13_default_cfg ( &buck13 );
    buck13_init( &buck13, &cfg );
    log_info( &logger, "Buck 13 is enabled now" );
}

Application Task

Displays the output voltage every 2 seconds.


void application_task ( void )
{
    //  Task implementation.

    buck13_enable( &buck13, BUCK13_ENABLE ); 
    out_voltage = buck13_get_voltage( &buck13 );
    log_printf( &logger, "Vout =  %d mV\r\n", out_voltage );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Buck13

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Thermostat 2 click

5

Thermostat 2 Click is a general-purpose thermostat Click board designed to be used with any temperature sensor based on the DS1820 sensor design: 3-pin package with 1-Wire® communication interface.

[Learn More]

STSPIN220 Click

0

STSPIN220 Click is a stepper motor driver with the PWM current control and selectable microstepping up to 256 microsteps. It is based on the STSPIN220, a low voltage stepper motor driver from STSPIN2 series. It is optimized for battery-powered, low voltage motor driving applications, featuring the lowest standby current available on the market (max 80 nA). The STSPIN220 is a high-efficiency motor driver, featuring low ON resistance MOSFETs as the output stage, in a small 3x3mm QFN package. Its output stage implements the PWM current control with fixed OFF time, along with a full set of protection features. The device can be used with the step motor voltage ranging from 1.8V to 10V, and current up to 1.3A per bridge.

[Learn More]

6DOF IMU 12 click

5

6DOF IMU 12 carries the ultra-low-power BMI270, Inertial Measurement Unit optimized for wearables providing precise acceleration, angular rate measurement and intelligent on-chip motion-triggered interrupt features.

[Learn More]