TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (387 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (120 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140169 times)
  2. FAT32 Library (72625 times)
  3. Network Ethernet Library (57645 times)
  4. USB Device Library (47958 times)
  5. Network WiFi Library (43555 times)
  6. FT800 Library (42942 times)
  7. GSM click (30141 times)
  8. mikroSDK (28672 times)
  9. PID Library (27058 times)
  10. microSD click (26553 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Boost 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Boost

Downloaded: 210 times

Not followed.

License: MIT license  

BOOST 2 Click is a DC-DC step-up (boost) regulator that has a fixed 5V output, which can be obtained from any low voltage input - such as NiCd, NiMH or one cell Li-Po/Li-Ion batteries.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Boost 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Boost 2 Click" changes.

Do you want to report abuse regarding "Boost 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog

Boost 2 Click

BOOST 2 Click is a DC-DC step-up (boost) regulator that has a fixed 5V output, which can be obtained from any low voltage input - such as NiCd, NiMH or one cell Li-Po/Li-Ion batteries.

boost2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : jan 2020.
  • Type : GPIO type

Software Support

We provide a library for the Boost2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Boost2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void boost2_cfg_setup ( boost2_cfg_t *cfg );

  • Initialization function.

    BOOST2_RETVAL boost2_init ( boost2_t ctx, boost2_cfg_t cfg );

Example key functions :

  • Set enable pin.

    void boost2_set_en_pin ( boost2_t *ctx, uint8_t new_state );

  • Get PG pin state.

    uint8_t boost2_get_pg_pin ( boost2_t *ctx );

Examples Description

This application features very high efficiency, low noise and anti-ringing voltage output.

The demo application is composed of two sections :

Application Init

Initializes Click driver.


void application_init ( void )
{
    log_cfg_t log_cfg;
    boost2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info(&logger, "---- Application Init ----");

    //  Click initialization.

    boost2_cfg_setup( &cfg );
    BOOST2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    boost2_init( &boost2, &cfg );
}

Application Task

Demonstrates the use of the Click drivers function. It shows how to enable or disable Click operation, and how to check if supplied voltage is good.


void application_task ( void )
{
    log_printf( &logger, "Enabling Click operation... \r\n" );
    boost2_set_en_pin( &boost2, 1 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "Checking output voltage... \r\n" );
    Delay_ms ( 500 );
    if ( boost2_get_pg_pin( &boost2 ))
    {
        log_printf( &logger, "Output voltage good. \r\n" );
    }
    else
    {
        log_printf( &logger, "Output voltage incorrect. \r\n" );
    }
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "Disabling Click operation... \r\n" );
    boost2_set_en_pin( &boost2, 0 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 ); 
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Boost2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

FTDI Click

0

FTDI Click is a compact add-on board that provides a high-speed USB to a serial interface converter. This board features the FT2232H, a 5th-generation high-speed USB 2.0 to a serial UART/I2C/SPI interface converter from FTDI. The entire USB protocol is handled on the chip (FTDI USB drivers required), making this board ideal for various USB applications. Besides a selectable interface and a standalone operation possibility, it also includes an EEPROM which contains the USB configuration descriptors for the FT2232H and one DA converter for additional reference in user-configurable applications.

[Learn More]

BATT-MON 4 Click

0

BATT-MON 4 Click is a compact add-on board representing an advanced battery monitoring solution. This board features the LTC3337, a primary battery state of health (SOH) monitor with a built-in precision coulomb counter from Analog Devices. The LTC3337 is designed to be placed in series with a primary battery with minimal associated series voltage drop. The patented infinite dynamic range coulomb counter tallies all accumulated battery discharge and stores it in an internal register accessible via an I2C interface. In addition, this Click board™ also can set the input current limit and has an additional discharge alarm interrupt and SOH monitoring which measures and reports via an I2C interface.

[Learn More]

7seg click

0

7seg Click is an accessory board in mikroBus form factor. It features two 74HC595 8-bit serial-in, parallel-out shift register modules as well as two seven-segment displays. 7seg Click communicates with target board via SPI interface. The board is designed to use 3.3V and 5V power supply.

[Learn More]