TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (387 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (120 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140168 times)
  2. FAT32 Library (72622 times)
  3. Network Ethernet Library (57644 times)
  4. USB Device Library (47957 times)
  5. Network WiFi Library (43554 times)
  6. FT800 Library (42942 times)
  7. GSM click (30140 times)
  8. mikroSDK (28670 times)
  9. PID Library (27057 times)
  10. microSD click (26552 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Flicker Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Relay

Downloaded: 256 times

Not followed.

License: MIT license  

FLICKER Click is the perfect, simple solution if you need to turn a device on and off at specific time intervals, like blinking LED commercials, alarm system lights, or any other signalling lights.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Flicker Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Flicker Click" changes.

Do you want to report abuse regarding "Flicker Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog

Flicker Click

FLICKER Click is the perfect, simple solution if you need to turn a device on and off at specific time intervals, like blinking LED commercials,alarm system lights, or any other signalling lights.

flicker_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : dec 2019.
  • Type : GPIO type

Software Support

We provide a library for the Flicker Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Flicker Click driver.

Standard key functions :

  • Config Object Initialization function.

    void flicker_cfg_setup ( flicker_cfg_t *cfg );

  • Initialization function.

    FLICKER_RETVAL flicker_init ( flicker_t ctx, flicker_cfg_t cfg );

  • Click Default Configuration function.

    void flicker_default_cfg ( flicker_t *ctx );

Example key functions :

  • Flicker engage function.

    void flicker_engage ( flicker_t *ctx );

Examples Description

This application simple solution if you need to turn a device on and off at specific time intervals.

The demo application is composed of two sections :

Application Init

Initialization driver enables GPIO and also starts write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    flicker_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info(&logger, "---- Application Init ----");

    //  Click initialization.

    flicker_cfg_setup( &cfg );
    FLICKER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    flicker_init( &flicker, &cfg );
}

Application Task

This example demonstrates capabilities of Flicker Click board.


void application_task ( void )
{
    log_printf( &logger, " *Flicker on!* r/n/" );
    flicker_engage( &flicker );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Flicker

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Load Cell 5 Click

0

Load Cell 5 Click is a compact add-on board that represents a weigh scale solution. This board features the AD7780, a pin-programmable, low power, 24-bit sigma-delta ΣΔ ADC from Analog Devices. It interfaces directly to the load cell, where the low-level signal from the load cell is amplified by the AD7780’s internal low noise programmable gain amplifier programmed to operate with a gain of 128 or 1. It also has a power-down mode allowing the user to switch off the power to the bridge sensor and power-down the AD7780 when not converting, increasing the product battery life. This Click board™ has many features that make it a perfect solution for safety-critical and weight measurement applications.

[Learn More]

CO2 3 Click

0

CO2 3 Click is a compact add-on board that allows for precise and reliable indoor air quality measurements. This board features XENSIV™ PASCO2V01BUMA1, a highly accurate CO2 sensor module from Infineon Technologies that uses photoacoustic spectroscopy technology to measure indoor air quality. The module comprises a gas measuring cell, an IR emitter, a microphone, and a microcontroller for data processing. Its key components are developed in-house, ensuring the highest quality and performance. Other major characteristics include high accuracy, low power consumption, and versatile configuration options.

[Learn More]

LR Click

0

LR Click is a compact add-on board that contains a low-power, long-range transceiver. This board features the RN2483, RF technology-based SRD transceiver, which operates at a frequency of 433/868MHz from Microchip Technology. This Click board™ features an embedded LoRaWAN Class A compliant stack, providing a long-range spread spectrum communication with high interference immunity. The RN2483 module is a fully certified 433/868MHz European R&TTE directive assessed radio modem combined with the advanced and straightforward command interface.

[Learn More]