TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139560 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57254 times)
  4. USB Device Library (47609 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42551 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26930 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Pedometer Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 231 times

Not followed.

License: MIT license  

Pedometer Click is designed to sense movement, more precisely, to sense and count steps taken by its user.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Pedometer Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Pedometer Click" changes.

Do you want to report abuse regarding "Pedometer Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Pedometer Click

Pedometer Click is designed to sense movement, more precisely, to sense and count steps taken by its user.

pedometer_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : dec 2019.
  • Type : I2C type

Software Support

We provide a library for the Pedometer Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Pedometer Click driver.

Standard key functions :

  • Config Object Initialization function.

    void pedometer_cfg_setup ( pedometer_cfg_t *cfg );

  • Initialization function.

    PEDOMETER_RETVAL pedometer_init ( pedometer_t ctx, pedometer_cfg_t cfg );

  • Click Default Configuration function.

    void pedometer_default_cfg ( pedometer_t *ctx );

Example key functions :

  • Functions for get Interrupt state on the INT pin.

    uint8_t pedometer_get_interrupt_state ( pedometer_t *ctx );

  • Functions for get step counter.

    uint32_t pedometer_get_step_counter ( pedometer_t *ctx );

  • Generic read function.

    void pedometer_generic_read ( pedometer_t ctx, uint8_t reg, uint8_t data_buf, uint8_t len );

Examples Description

This application detected steps.

The demo application is composed of two sections :

Application Init

Initializes driver init and sets step counter on 0.


void application_init ( void )
{
    log_cfg_t log_cfg;
    pedometer_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ---- \r\n " );

Application Task

It checks if a new step is detected, if detected new step - reads the current number of steps made and logs data to the USBUART.


void application_task ( void )
{
    //  Task implementation.

    uint8_t new_step;
    uint32_t s_counter;
    char demoText[ 50 ];

    new_step = pedometer_process( &pedometer );

    if ( new_step == PEDOMETER_NEW_STEP_DETECTED )
    {
        s_counter = pedometer_get_step_counter( &pedometer );
        log_printf( &logger, " Step Counter : %d \r\n ", s_counter );

        Delay_ms ( 50 );
    }

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Pedometer

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Thermo 15 Click

0

Thermo 15 Click is a Click board™ equipped with the sensor IC, which can digitize temperature measurements between -55°C and +125°C so that the temperature measurement data can be processed by the host MCU.

[Learn More]

Environment 2 Click

0

Environment 2 Click is a compact add-on board containing best-in-class SHT humidity and SGP air-quality sensing solutions from Sensirion. This board features SHT40 and SGP40, a high-accuracy ultra-low-power relative humidity, and a temperature sensor combined with MOx based gas sensor. The SHT40 sensor offers linearized digital output, provides constant temperature accuracy, up to 0.1°C, and shows the best performance when operated within the temperature and humidity range of 5-60°C and 20-80%RH, while the SGP40, a digital gas sensor, features a temperature-controlled micro hot-plate providing a humidity-compensated VOC-based indoor air quality signal. This Click board™ is suitable for indoor air quality and various temperature and humidity-related applications

[Learn More]

4x4 RGB 2 Click

0

4x4 RGB 2 Click is a compact add-on board that contains a matrix of 16 intelligent RGB LEDs, forming a 4x4 display screen. This board features 16 IN-PC55TBTRGB, 5x5mm RGB LEDs with an integrated IC from Inolux. The LEDs feature an 8-bit color control in 256 steps (256-level greyscale) and a 5-bit brightness control in 32 steps. The intelligent LEDs are cascaded (daisy-chained); thus, every one of them can communicate with the host MCU using the same data lines.

[Learn More]