TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141161 times)
  2. FAT32 Library (73970 times)
  3. Network Ethernet Library (58587 times)
  4. USB Device Library (48754 times)
  5. Network WiFi Library (44443 times)
  6. FT800 Library (44024 times)
  7. GSM click (30783 times)
  8. mikroSDK (29506 times)
  9. PID Library (27324 times)
  10. microSD click (27188 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

PIR Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 321 times

Not followed.

License: MIT license  

PIR Click is a pyroelectric sensor which generates a voltage when exposed to infrared radiation emitted by live bodies. It is equipped with the PL-N823-01, an infrared sensor from KEMET that uses the pyrolectric effect of ceramic by absorbing infrared rays emitted from the human body, while the the white plastic Fresnel lens covering the sensor filters visible light.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "PIR Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "PIR Click" changes.

Do you want to report abuse regarding "PIR Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog

PIR Click

PIR Click is a pyroelectric sensor which generates a voltage when exposed to infrared radiation emitted by live bodies. It is equipped with the PL-N823-01, an infrared sensor from KEMET that uses the pyrolectric effect of ceramic by absorbing infrared rays emitted from the human body, while the the white plastic Fresnel lens covering the sensor filters visible light.

pir_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : jan 2020.
  • Type : I2C type

Software Support

We provide a library for the Pir Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Pir Click driver.

Standard key functions :

  • Config Object Initialization function.

    void pir_cfg_setup ( pir_cfg_t *cfg );

  • Initialization function.

    PIR_RETVAL pir_init ( pir_t ctx, pir_cfg_t cfg );

Example key functions :

  • Reading 12bit ADC value.

    uint16_t pir_get_adc ( pir_t *ctx )

  • Reading register.

    uint16_t pir_reg_read ( pir_t *ctx );

  • Reading ADC data in mili Volts

    float pir_get_mili_volt ( pir_t *ctx, uint16_t ref_voltage );

Examples Description

This application which generates a voltage when exposed to infrared radiation.

The demo application is composed of two sections :

Application Init

Initializes device.


void application_init ( void )
{
    log_cfg_t log_cfg;
    pir_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    pir_cfg_setup( &cfg );
    PIR_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    pir_init( &pir, &cfg );
}

Application Task

Reads ADC data, converts it to miliVolts and logs scaled value in miliVolts.


void application_task ( void )
{
    uint16_t adc_val;
    float map_out;

    adc_val = pir_get_adc( &pir );
    map_out = pir_scale_results( &pir, adc_val, 0, 3303 );

    log_printf( &logger, " Voltage: %.2f\r\n", map_out);

    log_printf( &logger, " miliVolts \r\n" );
    Delay_ms ( 100 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Pir

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

EEPROM 13 Click

0

EEPROM 13 Click is a compact add-on board that contains a highly reliable, nonvolatile memory solution. This board features the M24M01E, an electrically erasable programmable memory with enhanced hardware write protection for entire memory from STMicroelectronics. Its memory size of 1Mbit is organized as 128K words of 8bits each, with a page size of 256 bytes and an additional 256 bytes of identification page. The identification page can be used to store sensitive application parameters, which can be (later) permanently locked in read-only mode.

[Learn More]

ADC 5 click

0

ADC 5 click uses the ADC121S021 device from Texas Instruments - a low power, single channel 12-bit CMOS analog to digital converter, with a high-speed serial interface. This device uses the SAR algorithm for sampling the input voltage which, coupled with relatively high bit depth, gives a pretty accurate digital reconstruction of the input voltage.

[Learn More]

ROTARY Y Click

0

Rotary Click carries a 15-pulse incremental rotary encoder with detents, surrounded by a ring of 16 yellow LEDs. It’s a perfect solution for adding a precision input knob to your design. The encoder outputs A and B signals (out of phase to each other); the knob also acts as a push-button which sends an interrupt to the target board MCU. The LED ring is controlled through SPI lines (CS, SCK, MISO, MOSI). Rotary Click can be used with either a 3.3V or 5V power supply.

[Learn More]