TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139566 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57256 times)
  4. USB Device Library (47615 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42566 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26933 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

RMS to DC Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Measurements

Downloaded: 250 times

Not followed.

License: MIT license  

RMS to DC Click is a Click board™ that is used to convert the RMS of the input signal into a DC voltage, with a value directly readable over the I2C interface.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "RMS to DC Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "RMS to DC Click" changes.

Do you want to report abuse regarding "RMS to DC Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog

RMS to DC Click

RMS to DC Click is a Click board™ that is used to convert the RMS of the input signal into a DC voltage, with a value directly readable over the I2C interface.

rmstodc_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : jan 2020.
  • Type : I2C type

Software Support

We provide a library for the RmstoDc Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for RmstoDc Click driver.

Standard key functions :

  • Config Object Initialization function.

    void rmstodc_cfg_setup ( rmstodc_cfg_t *cfg );

  • Initialization function.

    RMSTODC_RETVAL rmstodc_init ( rmstodc_t ctx, rmstodc_cfg_t cfg );

  • Generic write function.

    void rmstodc_generic_write ( rmstodc_t ctx, uint8_t reg, uint8_t data_buf, uint8_t len );

Example key functions :

  • ADC Read function.

    uint16_t rms2dc_read_adc ( rmstodc_t *ctx );

  • Get Output Voltage function.

    uint16_t rms2dc_vout_adc ( rmstodc_t *ctx, uint16_t vcc_sel );

  • Enable function.

    void rms2dc_enable ( rmstodc_t *ctx, uint8_t state );

Examples Description

This application convert the RMS of the input signal into a DC voltage.

The demo application is composed of two sections :

Application Init

Initializes I2C interface and turns ON the device.


void application_init ( void )
{
    log_cfg_t log_cfg;
    rmstodc_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    rmstodc_cfg_setup( &cfg );
    RMSTODC_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    rmstodc_init( &rmstodc, &cfg );

    rms2dc_enable( &rmstodc, RMS2DC_DEVICE_EN );
}

Application Task

Reads DC output voltage calculated to mV and sends results to the serial terminal.


void application_task ( void )
{
    out_volt_dc = rms2dc_vout_adc( &rmstodc, RMS2DC_VCC_3V3 );

    log_printf(&logger,"%u mV\r\n",out_volt_dc);

    Delay_ms ( 300 );
} 

Note

Note : The input voltage frequency should be in the range from 50Hz to 250kHz. Also the input voltage amplitude must be lower than 5V. In this conditions the device can convert the RMS signal, in every form, to DC signal.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.RmstoDc

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Buck click

1

BUCK click is a buck switching regulator that accepts a wide input voltage range of up to 40V and steps it down to 3.3V or 5V. The click carries the LT3976 40V, 5A, 2MHz step-down switching regulator with 3.3µA quiescent current.

[Learn More]

SwipeSwitch click

5

SwipeSwitch click is capacitive touch, gesture, and proximity sensing Click board, which is equipped with the IQS266, an integrated trackpad controller circuit which features ProxSense® and IQ Switch® technologies.

[Learn More]

EEPROM click

0

Simple example which demonstrates working with EEPROM click board in mikroBUS form factor. Example write bytes into EEPROM and read from it.

[Learn More]