TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141786 times)
  2. FAT32 Library (74881 times)
  3. Network Ethernet Library (59280 times)
  4. USB Device Library (49265 times)
  5. Network WiFi Library (45077 times)
  6. FT800 Library (44613 times)
  7. GSM click (31272 times)
  8. mikroSDK (30203 times)
  9. microSD click (27653 times)
  10. PID Library (27552 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

XSENS MTI-3 click

Rating:

5

Author: MIKROE

Last Updated: 2020-10-19

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: Motion

Downloaded: 565 times

Not followed.

License: MIT license  

XSENS MTi-3 Click is a compact add-on board that contains a fully functional module that can be configured as an Inertial Measurement Unit, Vertical reference Unit, or even an Attitude &amp; Heading Reference System.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "XSENS MTI-3 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "XSENS MTI-3 click" changes.

Do you want to report abuse regarding "XSENS MTI-3 click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)

mikroSDK Library Blog

XSENS MTi-3 Click

XSENS MTi-3 Click

Native view of the XSENS MTi-3 Click board.

View full image
XSENS MTi-3 Click

XSENS MTi-3 Click

Front and back view of the XSENS MTi-3 Click board.

View full image

Library Description

The library contains basic functions for working with click. Of the communications, only UART is supported.

Key functions:

  • void xsensmti3_parser(uint8_t *rsp_buf, uint8_t start_cnt xsensmti3_parse_t *obj ) - General Parser
  • void xsensmti3_get_data(xsensmti3_quat_t *quat_obj,xsensmti3_data_t *data_obj) - Get Roll, Pitch and Yaw
  • uint8_t xsensmti3_check_package(uint8_t *package_buf,uint8_t *start_package) - Checks package

Examples description

The application is composed of three sections :

  • System Initialization - Initialize UART module and necessary GPIO pins
  • Application Initialization - Initialize driver init and uart interrupt
  • Application Task - Reads and parsing data packaga. Shows Roll, Pitch and Yaw data.
void application_task ( )
{
    uint8_t check_data = 0;
    uint8_t cnt = 0;

    // STARTS COLLECTING DATA
    if ( active_flag == XSENSMTI3_WAIT_FOR_START )
    {
        memset( &parser_current_buf[0], 0 , 110 );
        parser_buf_cnt = 0;
        active_flag = XSENSMTI3_START_PROCESS;
        xsensmti3_enable_uart_isr( );
    }

    // CHECKS RECEIVED DATA
    if ( ( parser_buf_cnt > 100 ) && ( active_flag == XSENSMTI3_START_PROCESS ) )
    {
       xsensmti3_disable_uart_isr( );
       active_flag = XSENSMTI3_DATA_PROCESSING;
    }

    // CHECKS IF THE VALID PACKAGE IS RECEIVED
    if ( active_flag == XSENSMTI3_DATA_PROCESSING )
    {
        check_data = xsensmti3_check_package( &parser_current_buf[0], &start_rsp );
        if ( check_data == 1 )
        {
            active_flag = XSENSMTI3_PARSER_DATA;
        }
        else
        {
            active_flag = XSENSMTI3_WAIT_FOR_START;
        }
    }

    // PARSING DATA AND DISPLAY
    if ( active_flag == XSENSMTI3_PARSER_DATA )
    {
       xsensmti3_parser( &parser_current_buf[0], start_rsp, &parse_data_obj );

       mikrobus_logWrite( ">> Quaternion data <<", _LOG_LINE );

       for ( cnt = 0; cnt < 4; cnt++ )
       {
           mikrobus_logWrite( ">> Q: ", _LOG_TEXT );
           FloatToStr( parse_data_obj.quat_obj.quat_data[ cnt ], demo_text );
           LTrim( demo_text );
           mikrobus_logWrite( demo_text , _LOG_LINE );
       }

       mikrobus_logWrite( "--------------", _LOG_LINE );

       xsensmti3_get_data( &parse_data_obj.quat_obj, &data_obj );

       mikrobus_logWrite( ">> ROLL: ", _LOG_TEXT );
       FloatToStr( data_obj.roll, demo_text );
       LTrim( demo_text );
       mikrobus_logWrite( demo_text , _LOG_LINE );

       mikrobus_logWrite( ">> PITCH: ", _LOG_TEXT );
       FloatToStr( data_obj.pitch, demo_text );
       LTrim( demo_text );
       mikrobus_logWrite( demo_text , _LOG_LINE );

       mikrobus_logWrite( ">> YAW: ", _LOG_TEXT );
       FloatToStr( data_obj.yaw, demo_text );
       LTrim( demo_text );
       mikrobus_logWrite( demo_text , _LOG_LINE );

       Delay_ms( 1000 );
       active_flag = XSENSMTI3_WAIT_FOR_START;

       mikrobus_logWrite( " rn--------------", _LOG_LINE );
    }
}

Other mikroE Libraries used in the example:

  • UART Library

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

Remote Temp Click

0

Remote Temp Click is a temperature sensing Click board™, which features the EMC1833 from Microchip, a specifically designed IC, capable of measuring remote temperature. This option makes Remote Temp Click well-suited for monitoring the temperature of a CPU, GPU or FPGA, where the BJT model junction can be a substrate PNP or NPN.

[Learn More]

NeoMesh 2 Click

0

NeoMesh 2 Click is a compact add-on board with a low-power, long-range transceiver, ideal for Mesh wireless networking. This board features the NC2400, a wireless Mesh network module from NeoCortec. With an additional antenna that MikroE offers connected to the module’s u.Fl connector, you can create a fully functional wireless Mesh network node that will work in the Sub-GHz frequency band of 2.4GHz. The module has a generic application layer that can be configured to suit applications.

[Learn More]

Buck 3 Click

5

Buck 3 click is a very advanced synchronous step-down (buck) converter, which is designed to deliver noise and ripple-free voltage to highly sensitive applications, such as FPGA and high-performance DSP platforms.

[Learn More]