TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139568 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57256 times)
  4. USB Device Library (47631 times)
  5. Network WiFi Library (43222 times)
  6. FT800 Library (42566 times)
  7. GSM click (29932 times)
  8. mikroSDK (28292 times)
  9. PID Library (26934 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

XSENS MTI-3 click

Rating:

5

Author: MIKROE

Last Updated: 2020-10-19

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: Motion

Downloaded: 406 times

Not followed.

License: MIT license  

XSENS MTi-3 Click is a compact add-on board that contains a fully functional module that can be configured as an Inertial Measurement Unit, Vertical reference Unit, or even an Attitude &amp; Heading Reference System.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "XSENS MTI-3 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "XSENS MTI-3 click" changes.

Do you want to report abuse regarding "XSENS MTI-3 click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)

mikroSDK Library Blog

XSENS MTi-3 Click

XSENS MTi-3 Click

Native view of the XSENS MTi-3 Click board.

View full image
XSENS MTi-3 Click

XSENS MTi-3 Click

Front and back view of the XSENS MTi-3 Click board.

View full image

Library Description

The library contains basic functions for working with click. Of the communications, only UART is supported.

Key functions:

  • void xsensmti3_parser(uint8_t *rsp_buf, uint8_t start_cnt xsensmti3_parse_t *obj ) - General Parser
  • void xsensmti3_get_data(xsensmti3_quat_t *quat_obj,xsensmti3_data_t *data_obj) - Get Roll, Pitch and Yaw
  • uint8_t xsensmti3_check_package(uint8_t *package_buf,uint8_t *start_package) - Checks package

Examples description

The application is composed of three sections :

  • System Initialization - Initialize UART module and necessary GPIO pins
  • Application Initialization - Initialize driver init and uart interrupt
  • Application Task - Reads and parsing data packaga. Shows Roll, Pitch and Yaw data.
void application_task ( )
{
    uint8_t check_data = 0;
    uint8_t cnt = 0;

    // STARTS COLLECTING DATA
    if ( active_flag == XSENSMTI3_WAIT_FOR_START )
    {
        memset( &parser_current_buf[0], 0 , 110 );
        parser_buf_cnt = 0;
        active_flag = XSENSMTI3_START_PROCESS;
        xsensmti3_enable_uart_isr( );
    }

    // CHECKS RECEIVED DATA
    if ( ( parser_buf_cnt > 100 ) && ( active_flag == XSENSMTI3_START_PROCESS ) )
    {
       xsensmti3_disable_uart_isr( );
       active_flag = XSENSMTI3_DATA_PROCESSING;
    }

    // CHECKS IF THE VALID PACKAGE IS RECEIVED
    if ( active_flag == XSENSMTI3_DATA_PROCESSING )
    {
        check_data = xsensmti3_check_package( &parser_current_buf[0], &start_rsp );
        if ( check_data == 1 )
        {
            active_flag = XSENSMTI3_PARSER_DATA;
        }
        else
        {
            active_flag = XSENSMTI3_WAIT_FOR_START;
        }
    }

    // PARSING DATA AND DISPLAY
    if ( active_flag == XSENSMTI3_PARSER_DATA )
    {
       xsensmti3_parser( &parser_current_buf[0], start_rsp, &parse_data_obj );

       mikrobus_logWrite( ">> Quaternion data <<", _LOG_LINE );

       for ( cnt = 0; cnt < 4; cnt++ )
       {
           mikrobus_logWrite( ">> Q: ", _LOG_TEXT );
           FloatToStr( parse_data_obj.quat_obj.quat_data[ cnt ], demo_text );
           LTrim( demo_text );
           mikrobus_logWrite( demo_text , _LOG_LINE );
       }

       mikrobus_logWrite( "--------------", _LOG_LINE );

       xsensmti3_get_data( &parse_data_obj.quat_obj, &data_obj );

       mikrobus_logWrite( ">> ROLL: ", _LOG_TEXT );
       FloatToStr( data_obj.roll, demo_text );
       LTrim( demo_text );
       mikrobus_logWrite( demo_text , _LOG_LINE );

       mikrobus_logWrite( ">> PITCH: ", _LOG_TEXT );
       FloatToStr( data_obj.pitch, demo_text );
       LTrim( demo_text );
       mikrobus_logWrite( demo_text , _LOG_LINE );

       mikrobus_logWrite( ">> YAW: ", _LOG_TEXT );
       FloatToStr( data_obj.yaw, demo_text );
       LTrim( demo_text );
       mikrobus_logWrite( demo_text , _LOG_LINE );

       Delay_ms( 1000 );
       active_flag = XSENSMTI3_WAIT_FOR_START;

       mikrobus_logWrite( " rn--------------", _LOG_LINE );
    }
}

Other mikroE Libraries used in the example:

  • UART Library

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

RMS to DC click

7

RMS to DC click is a Click board that is used to convert the RMS of the input signal into a DC voltage, with a value directly readable over the I2C interface. The Click board is equipped with the LTC1968, an RMS-to-DC converter IC, which outputs an analog voltage depending on the RMS value of the input signal.

[Learn More]

OSD click

0

This is a sample program which demonstrates the use of OSD click. Program shows the time and date in corners of the screen and enable you to set the time and date, using the OSD menu.

[Learn More]

DC Motor 12 Click

0

DC Motor 12 Click is a compact add-on board with a brushed DC motor driver. This board features the TB9054FTG, a PWM-type, dual-channel, H-bridge, brushed DC motor driver from Toshiba Semiconductor. The TB9054FTG is rated for an operating voltage range from 4.5V to 28V, with the motor controlled directly through a PWM signal or SPI serial interface. In addition, this driver allows a dual configuration with two motors with 5A current ratings per channel or one 10A channel drive in a Parallel mode of operation. It also has complete diagnostic and protection capabilities supporting robust and reliable operation.

[Learn More]