TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (403 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (132 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140956 times)
  2. FAT32 Library (73508 times)
  3. Network Ethernet Library (58321 times)
  4. USB Device Library (48508 times)
  5. Network WiFi Library (44132 times)
  6. FT800 Library (43686 times)
  7. GSM click (30546 times)
  8. mikroSDK (29286 times)
  9. PID Library (27220 times)
  10. microSD click (26931 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

pH click

Rating:

5

Author: MIKROE

Last Updated: 2020-12-04

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: Environmental

Downloaded: 2264 times

Not followed.

License: MIT license  

pH Click is a compact add-on board that provides an opportunity for the user to read pH with the same accuracy and capabilities as with some other expensive solutions.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "pH click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "pH click" changes.

Do you want to report abuse regarding "pH click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

pH click

pH click

Native view of the pH click board.

View full image
pH click

pH click

Front and back view of the pH click board.

View full image

Library Description

The library covers all the functions necessary to control pH Click board™. It initializes and defines the UART drivers, and holds functions that allow full control of the device to the user.

Key functions:

  • void ph_send_cmd ( char *p_cmd ); - Function is used to send command and does not expect response.
  • void ph_perf_calib ( char *point, float flt_val, char *p_resp ); - Function is used to perform calibration.
  • ph_response ( char *p_resp ); - Function is used to handle collected data.

Examples description

The application is composed of three sections :

  • System Initialization - Initializes UART module and LOG structure.
  • Application Initialization - Initalizes UART driver, sets up driver up the device, and performs a single point calibration.
  • Application Task - This example shows capabilities of pH Click board™ by reading user's perform single read input from USART terminal and performs reading of pH value of the supstance in which the probe is submerged and displaying readings via USART terminal.
void application_task ( )
{
    char cmd;

    ph_clr_log_buf( &log_txt[ 0 ] );
    if ( UART_Rdy_Ptr() )
    {
        cmd = UART_Rd_Ptr( );
        mikrobus_logWrite( "", _LOG_LINE );
        mikrobus_logWrite( " pH value: ", _LOG_TEXT );
        ph_send_cmd ( PH_CMD_SET_SNGL_READ );
        Delay_ms( 1000 );
        ph_response( &log_txt[ 0 ] );
        mikrobus_logWrite( &log_txt[ 0 ], _LOG_LINE );
    }
}

Additional Functions :

  • void float_to_str ( uint8_t byte_buf, uint8_t *str ) - Wrapper FloatToStr for driver function.
  • void long_word_to_str ( uint32_t long_word_buf, uint8_t *str ) - Wrapper LongWordToStr for driver function.
  • void byte_to_str ( uint8_t byte_buf, uint8_t *str ) - Wrapper ByteToStr for driver function.

Other mikroE Libraries used in the example:

  • UART
  • Conversions

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

Terminal Click

0

Terminal Click can be especially interesting for the development systems that are equipped with mikroBUS™ slots only, or small number of GPIO pins available, such as the Clicker family of development systems.

[Learn More]

Joystick Click

0

Joystick Click is a smart navigation key concept based on contactless, magnetic movement detection.

[Learn More]

UT-S 7-SEG R Click

0

7-segment LED display is the most commonly used type of display to represent changing numerical values. The principle is very simple - seven LED segments are positioned in a certain shape and by turning specific segments on or off, the shape that resembles a specific number is lit. This method of displaying numbers was first used in the beginning of the 20th century, but after the invention of the LED in ‘70, it is the most commonly used method to display numbers. It utilizes a fairly simple and cheap design with the numbers clearly visible.

[Learn More]