TOP Contributors

  1. MIKROE (2663 codes)
  2. Alcides Ramos (358 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137101 times)
  2. FAT32 Library (70236 times)
  3. Network Ethernet Library (56126 times)
  4. USB Device Library (46434 times)
  5. Network WiFi Library (42077 times)
  6. FT800 Library (41389 times)
  7. GSM click (29116 times)
  8. mikroSDK (26562 times)
  9. PID Library (26500 times)
  10. microSD click (25487 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

SRAM 2 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: SRAM

Downloaded: 131 times

Not followed.

License: MIT license  

SRAM 2 Click is based on ANV32A62A SRAM memory from Anvo-Systems Dresden. It's a 64Kb serial SRAM with a non-volatile SONOS storage element included with each memory cell, organized as 8k words of 8 bits each.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "SRAM 2 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "SRAM 2 click" changes.

Do you want to report abuse regarding "SRAM 2 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


SRAM 2 click

SRAM 2 Click is based on ANV32A62A SRAM memory from Anvo-Systems Dresden. It's a 64Kb serial SRAM with a non-volatile SONOS storage element included with each memory cell, organized as 8k words of 8 bits each.

sram2_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : Jul 2020.
  • Type : I2C type

Software Support

We provide a library for the Sram2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Sram2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void sram2_cfg_setup ( sram2_cfg_t *cfg );

  • Initialization function.

    SRAM2_RETVAL sram2_init ( sram2_t ctx, sram2_cfg_t cfg );

Example key functions :

  • Generic write function.

    void sram2_generic_write ( sram2_t *ctx, uint16_t reg, uint8_t wr_data );

  • Generic read function.

    void sram2_generic_read ( sram2_t *ctx, uint16_t reg, uint8_t rx_data );

  • Set PWM pin for write protection.

    void sram2_write_protect( sram2_t *ctx, uint8_t state );

Examples Description

This demo application writes and reads from memory.

The demo application is composed of two sections :

Application Init

Initializes driver init.


void application_init ( void )
{
    log_cfg_t log_cfg;
    sram2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    sram2_cfg_setup( &cfg );
    SRAM2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    sram2_init( &sram2, &cfg );
}

Application Task

Writes and then reads data from memory.


void application_task ( void )
{
    uint8_t cnt;

    log_printf( &logger, ">> Write data [ MikroE ] to memory. \r\n" );

    sram2_write_protect( &sram2, SRAM2_WR_ENABLE );
    for ( cnt = 0; cnt < 8; cnt++ )
    {
        sram2_generic_write( &sram2, memory_addr + cnt, message_data[ cnt ] );
    }
    Delay_ms ( 1000 );
    sram2_write_protect( &sram2, SRAM2_WR_DISABLE );

    log_printf( &logger, ">> Read data from memory. Data : " );
    for ( cnt = 0; cnt < 8; cnt++ )
    {
        sram2_generic_read( &sram2, memory_addr + cnt, rx_data );
        log_printf( &logger, " %c ", rx_data );
        Delay_100ms( );
    }
    log_printf( &logger, "  \r\n" );
    log_printf( &logger, "-------------------------------- \r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Sram2

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

I2C to SPI click

5

I2C to SPI Click is an all-in-one solution which allows serving as an interface between a standard I2C-bus of a microcontroller and an SPI bus, which allows the microcontroller to communicate directly with SPI devices through its I2C-bus.

[Learn More]

Hall Current 14 click

0

Hall Current 14 Click is a compact add-on board that contains a precise solution for AC/DC current sensing. This board features the MCS1801, a fully integrated Hall-effect-based isolated linear current sensor designed for the current range of ±25A from Monolithic Power Systems (MPS). The galvanic isolation between the pins of the primary copper conductive path and the sensor leads allows the MCS1801 to replace optoisolators or other isolation devices. Applied current flowing through this copper conduction path generates a magnetic field that the differential Hall sensors convert into a proportional voltage, where after that, the user is given the option to process the output voltage as an analog or digital value.

[Learn More]

Boost 2 click

0

BOOST 2 click is a DC-DC step-up (boost) regulator that has a fixed 5V output, which can be obtained from any low voltage input - such as NiCd, NiMH or one cell Li-Po/Li-Ion batteries.

[Learn More]