TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141830 times)
  2. FAT32 Library (74956 times)
  3. Network Ethernet Library (59319 times)
  4. USB Device Library (49309 times)
  5. Network WiFi Library (45108 times)
  6. FT800 Library (44676 times)
  7. GSM click (31287 times)
  8. mikroSDK (30217 times)
  9. microSD click (27664 times)
  10. PID Library (27565 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

GPS Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.25

mikroSDK Library: 2.0.0.0

Category: GPS/GNSS

Downloaded: 644 times

Not followed.

License: MIT license  

GPS Click is a compact solution for adding GPS functionality to your device. It carries the u-blox LEA-6S high-performance position engine.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "GPS Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "GPS Click" changes.

Do you want to report abuse regarding "GPS Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


GPS Click

GPS Click is a compact solution for adding GPS functionality to your device. It carries the u-blox LEA-6S high-performance position engine.

gps_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : apr 2020.
  • Type : UART GPS/GNSS type

Software Support

We provide a library for the Gps Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Gps Click driver.

Standard key functions :

  • Config Object Initialization function.

    void gps_cfg_setup ( gps_cfg_t *cfg );

  • Initialization function.

    GPS_RETVAL gps_init ( gps_t ctx, gps_cfg_t cfg );

Example key functions :

  • Generic parser function.

    gps_error_t gps_generic_parser ( char rsp, uint8_t command, uint8_t element, char parser_buf );

  • Generic read function.

    int32_t gps_generic_read ( gps_t ctx, char data_buf, uint16_t max_len );

  • Wake-up module.

    void gps_module_wakeup ( gps_t *ctx );

Examples Description

This example reads and processes data from GPS clicks.

The demo application is composed of two sections :

Application Init

Initializes driver and wake-up module.


void application_init ( void )
{
    log_cfg_t log_cfg;
    gps_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    gps_cfg_setup( &cfg );
    GPS_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    gps_init( &gps, &cfg );

    gps_module_wakeup( &gps );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

Application Task

Reads the received data and parses it.


void application_task ( void )
{
    gps_process(  );
    parser_application( current_parser_buf );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Gps

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Vibro Motor 4 Click

0

Vibro Motor 4 Click is a compact add-on board that makes an ideal solution for adding simple haptic feedback in any design. This board features the G1040003D, a coin-sized linear resonant actuator (LRA) that generates vibration/haptic feedback from Jinlong Machinery & Electronics, Inc. Driven by a flexible Haptic/Vibra driver, the DRV2605, G1040003D vibrates in the Z-axis, which is perpendicular to the face of the vibration motor. It draws a maximum of 170mA while producing the highest G force/vibration energy of 2 GRMS. This Click board™ makes an excellent choice for devices with limited battery capacity and for users who require crisp haptic feedback and low power consumption.

[Learn More]

RS485 3 click

5

RS485 3 click uses SN65HVD31DR from Texas Instruments, a tri-state differential line driver and differential input line receiver. The click is intended to be used as UART to RS422/RS485 communication interface. It is suited for transmitting smaller blocks of data over long distances, using the four-wire bus, allowing for full-duplex communication.

[Learn More]

UVC Light Click

0

UVC Light Click is Click board™ with ultraviolet LEDs with 275nm wavelength which can be complemented with UVC Click for measuring exact dose of UV radiation. UVC radiation refers to wavelengths shorter than 280 nm. Because of the spectral sensitivity of DNA, only the UVC region demonstrates significant germicidal properties. As evident by multiple research studies and reports, when biological organisms are exposed to deep UV light in the range of 200 nm to 300 nm it is absorbed by DNA, RNA, and proteins. With two 0.7W (1.4W combined power) UVC Light Click is a perfect solution as a small surface disinfection tool.

[Learn More]