TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141825 times)
  2. FAT32 Library (74956 times)
  3. Network Ethernet Library (59317 times)
  4. USB Device Library (49308 times)
  5. Network WiFi Library (45107 times)
  6. FT800 Library (44675 times)
  7. GSM click (31287 times)
  8. mikroSDK (30214 times)
  9. microSD click (27664 times)
  10. PID Library (27563 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Ammonia Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Gas

Downloaded: 445 times

Not followed.

License: MIT license  

Ammonia Click is an Ammonia detection (NH3) sensor, based on the MQ-137 gas sensor. This gas sensor has a sensitive layer made of SnO2, which changes its resistance when exposed to ammonia.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Ammonia Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Ammonia Click" changes.

Do you want to report abuse regarding "Ammonia Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Ammonia Click

Ammonia Click is an Ammonia detection (NH3) sensor, based on the MQ-137 gas sensor. This gas sensor has a sensitive layer made of SnO2, which changes its resistance when exposed to ammonia.

ammonia_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jul 2020.
  • Type : SPI type

Software Support

We provide a library for the Ammonia Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Ammonia Click driver.

Standard key functions :

  • Config Object Initialization function.

    void ammonia_cfg_setup ( ammonia_cfg_t *cfg );

  • Initialization function.

    AMMONIA_RETVAL ammonia_init ( ammonia_t ctx, ammonia_cfg_t cfg );

Example key functions :

  • Sensor heater function

    void ammonia_heater ( ammonia_t *ctx, uint8_t state );

  • Read data function

    uint32_t ammonia_data_read ( ammonia_t *ctx );

Examples Description

This demo application reads ADC value.

The demo application is composed of two sections :

Application Init

Initalizes SPI driver, turns on the heater, and makes an initial log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    ammonia_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    ammonia_cfg_setup( &cfg );
    AMMONIA_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    ammonia_init( &ammonia, &cfg );
    Delay_ms ( 100 );

    ammonia_heater( &ammonia, AMMONIA_HEATER_ON );
    Delay_ms ( 1000 );

    log_printf( &logger, "-------------------- \r\n" );
    log_printf( &logger, "   Ammonia  Click    \r\n" );
    log_printf( &logger, "-------------------- \r\n" );
}

Application Task

This is an example that shows the capabilities of the ADC 9 Click by reading ADC value and displaying it via UART.


void application_task ( void )
{
    spi_adc_value = ammonia_data_read( &ammonia );

    log_printf( &logger, "ADC value: %s \r\n", spi_adc_value );

    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Ammonia

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

LTE Cat.1 2 Click

0

LTE Cat.1 2 Click (EU) is a compact add-on board that provides your application with complete LTE and VoLTE with CSFB functionalities. This board features the ELS62-E, a single antenna LTE cat.1bis module from Telit.

[Learn More]

UART to I2C Click

0

UART to I2C Click is a compact add-on board allowing connections to UART controllers and I2C targets for protocol conversion. This board features the SC18IM704, a bridge between the standard UART host interface and a serial I2C bus from NXP Semiconductors. The SC18IM704 provides a high-speed UART interface with a baud rate of up to 460.8 kbit/s and 256-byte FIFO for the transfer/receive data process, alongside several user-configurable GPIO pins. The host MCU communicates with the SC18IM704 with ASCII messages protocol, allowing it to control all the specific I2C-bus sequences, protocol, arbitration, and timing.

[Learn More]

Temp-Hum 8 click

5

Temp&amp;Hum 8 click is based on a sensor from the popular SHT family, designed to measure temperature and humidity. This sensor family has already become an industry standard, providing proven reliability and stability while requiring a minimum number of components, making the development of applications cheaper and faster.

[Learn More]