TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141855 times)
  2. FAT32 Library (75021 times)
  3. Network Ethernet Library (59335 times)
  4. USB Device Library (49335 times)
  5. Network WiFi Library (45147 times)
  6. FT800 Library (44690 times)
  7. GSM click (31297 times)
  8. mikroSDK (30249 times)
  9. microSD click (27680 times)
  10. PID Library (27570 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

AudioAmp 5 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Amplifier

Downloaded: 396 times

Not followed.

License: MIT license  

AudioAmp 5 Click is a stereo audio amplifier, capable of delivering up to 10W per channel with the 8Ω load.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "AudioAmp 5 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "AudioAmp 5 Click" changes.

Do you want to report abuse regarding "AudioAmp 5 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Audio Amp 5 Click

AudioAmp 5 Click is a stereo audio amplifier, capable of delivering up to 10W per channel with the 8Ω load.

audioamp5_click.png

Click Product page


Click library

  • Author : Petar Suknjaja
  • Date : Dec 2019.
  • Type : GPIO type

Software Support\mainpage Main Page


Audio Amp 5 Click

AudioAmp 5 Click is a stereo audio amplifier, capable of delivering up to 10W per channel with the 8Ω load.

Click image

Click Product page


Click library

  • Author : Petar Suknjaja
  • Date : Dec 2019.
  • Type : GPIO type

Software Support

We provide a library for the AudioAmp5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for AudioAmp5 Click driver. The library performs the audio control of the Audio Amp 5 Click board. This library consists of the special commands for audio output control, for example to mute/turn on the outputs, to select the desired output gain or mode.

Standard key functions :

  • Config Object Initialization function.

    void audioamp5_cfg_setup ( audioamp5_cfg_t *cfg );

  • Initialization function.

    AUDIOAMP5_RETVAL audioamp5_init ( audioamp5_t ctx, audioamp5_cfg_t cfg );

  • Click Default Configuration function.

    void audioamp5_default_cfg ( audioamp5_t *ctx );

Example key functions :

  • Function puts a device to the desired mode.

    void audioamp5_mode_select ( audioamp5_t *ctx, uint8_t state );

  • Function performs a desired gain selection.

    void audioamp5_gain_select ( audioamp5_t *ctx, uint8_t state );

  • Function to update the configuration of the module.

    void audioamp5_config_update ( audioamp5_t *ctx );

Examples Description

This example consist of sending special commands for audio output control, selecting different output modes and turning on/off the audio output.

The demo application is composed of two sections :

Application Init

Initializes GPIO interface on the desired mikrobus selection, and performs a device init configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;
    audioamp5_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    audioamp5_cfg_setup( &cfg );
    AUDIOAMP5_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    audioamp5_init( &audioamp5, &cfg );

    audioamp5_default_cfg( &audioamp5 );
    log_printf( &logger, "** Audio Amp 5 is initialized **\r\n" );
    Delay_ms ( 500 );
}

Application Task

Checks the entered command and, if the command is valid, performs a device configuration which the entered command determines.

void application_task ( void )
{
    //  Task implementation.

    audioamp5_gain_select( &audioamp5, AUDIOAMP5_GAIN_26DB );
    audioamp5_config_update( &audioamp5 );
    log_printf( &logger, "** Gain value is 26dB **\r\n" );    

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    audioamp5_gain_select( &audioamp5, AUDIOAMP5_GAIN_20DB );
    audioamp5_config_update( &audioamp5 );
    log_printf( &logger, "** Gain value is 20dB **\r\n" );  

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

Note

After each command for device configuration, the command for configuration updating will be executed. When BD Mode (0) is selected, the VIN supply voltage threshold is 7.5V. When Low-Idle-Current 1SPW Mode is selected, the VIN supply voltage threshold > is 3.4V.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.AudioAmp5

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


We provide a library for the AudioAmp5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for AudioAmp5 Click driver. The library performs the audio control of the Audio Amp 5 Click board. This library consists of the special commands for audio output control, for example to mute/turn on the outputs, to select the desired output gain or mode.

Standard key functions :

  • Config Object Initialization function.

    void audioamp5_cfg_setup ( audioamp5_cfg_t *cfg );

  • Initialization function.

    AUDIOAMP5_RETVAL audioamp5_init ( audioamp5_t ctx, audioamp5_cfg_t cfg );

  • Click Default Configuration function.

    void audioamp5_default_cfg ( audioamp5_t *ctx );

Example key functions :

  • Function puts a device to the desired mode.

    void audioamp5_mode_select ( audioamp5_t *ctx, uint8_t state );

  • Function performs a desired gain selection.

    void audioamp5_gain_select ( audioamp5_t *ctx, uint8_t state );

  • Function to update the configuration of the module.

    void audioamp5_config_update ( audioamp5_t *ctx );

Examples Description

This example consist of sending special commands for audio output control, selecting different output modes and turning on/off the audio output.

The demo application is composed of two sections :

Application Init

Initializes GPIO interface on the desired mikrobus selection, and performs a device init configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;
    audioamp5_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    audioamp5_cfg_setup( &cfg );
    AUDIOAMP5_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    audioamp5_init( &audioamp5, &cfg );

    audioamp5_set_device_state( &audioamp5, AUDIOAMP5_PWRUP_UNMUTE_OUTPUTS );
    audioamp5_default_cfg( &audioamp5 );
    log_printf( &logger, "** Audio Amp 5 is initialized **\r\n" );
    Delay_ms ( 500 );
}

Application Task

Checks the entered command and, if the command is valid, performs a device configuration which the entered command determines.

void application_task ( void )
{
    //  Task implementation.

    audioamp5_gain_select( &audioamp5, AUDIOAMP5_GAIN_26DB );
    audioamp5_config_update( &audioamp5 );
    log_printf( &logger, "** Gain value is 26dB \r\n**" );    

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    audioamp5_gain_select( &audioamp5, AUDIOAMP5_GAIN_20DB );
    audioamp5_config_update( &audioamp5 );
    log_printf( &logger, "** Gain value is 20dB \r\n**" );    
}

Note

After each command for device configuration, the command for configuration updating will be executed. When BD Mode (0) is selected, the VIN supply voltage threshold is 7.5V. When Low-Idle-Current 1SPW Mode is selected, the VIN supply voltage threshold > is 3.4V.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.AudioAmp5

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Pressure 23 07BA Click

0

Pressure 23 Click - 07BA is a compact add-on board for accurate and reliable absolute pressure and temperature measurements in harsh environments. This board features the MS5849-07BA, an ultra-compact, chlorine-resistant sensor from TE Connectivity that delivers 24-bit resolution data via I2C or SPI interfaces. It operates within pressure ranges of 0.4 to 7 bar, features a chlorine-resistant gel coating, and measures temperatures from -20 to +85°C. The sensor's grounded metal ring provides robust protection and secure O-ring mounting, while the flexible communication options allow for optimized performance.

[Learn More]

Proximity 13 click

5

Proximity 13 Click based on SI1153-AB09-GMR IC from Silicon Labs that can be used as an proximity, and gesture detector with I2C digital interface and programmable-event interrupt output. The host can send command the Proximity 13 click to initiate on-demand proximity measurements.

[Learn More]

Heart Rate 8 Click

0

Heart Rate 8 Click is an optical biosensor Click board™, designed for heart-rate monitoring (HRM). This Click board™ employs a specialized sensor that incorporates three LED drivers and two photo-sensing elements, sensitive to green and IR light.

[Learn More]