TOP Contributors

  1. MIKROE (2763 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (91 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139275 times)
  2. FAT32 Library (71760 times)
  3. Network Ethernet Library (57128 times)
  4. USB Device Library (47434 times)
  5. Network WiFi Library (43098 times)
  6. FT800 Library (42409 times)
  7. GSM click (29835 times)
  8. mikroSDK (28109 times)
  9. PID Library (26887 times)
  10. microSD click (26201 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Boost-inv 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.22

mikroSDK Library: 2.0.0.0

Category: Boost

Downloaded: 190 times

Not followed.

License: MIT license  

Boost-INV 2 Click is a very useful DC/DC voltage converter device, as can output both positive and negative voltage, boosted up to 15V and inverted to -15V, from a single fixed voltage input.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Boost-inv 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Boost-inv 2 Click" changes.

Do you want to report abuse regarding "Boost-inv 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Boost-inv 2 Click

Boost-INV 2 Click is a very useful DC/DC voltage converter device, as can output both positive and negative voltage, boosted up to 15V and inverted to -15V, from a single fixed voltage input.

boostinv2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the boostinv2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for boostinv2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void boostinv2_cfg_setup ( boostinv2_cfg_t *cfg );

  • Initialization function.

    BOOSTONV2_RETVAL boostinv2_init ( boostinv2_t ctx, boostinv2_cfg_t cfg );

  • Click Default Configuration function.

    void boostinv2_default_cfg ( boostinv2_t *ctx );

Example key functions :

  • Functions for set positive output voltage.

    void boostinv2_set_positive_voltage ( boostinv2_t *ctx, uint16_t voltage );

  • Functions for set negative output voltage.

    void boostinv2_set_negative_voltage ( boostinv2_t *ctx, uint16_t voltage );

  • Generic transfer function.

    void boostinv2_generic_transfer ( boostinv2_t ctx, spi_master_transfer_data_t block );

Examples Description

First increse positiv voltage by 2V every 3 seconda, then decrese negative value for -2v every 3 seconds.

The demo application is composed of two sections :

Application Init

Initializes Driver init and enable chip

void application_init ( void )
{
    log_cfg_t log_cfg;
    boostinv2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    boostinv2_cfg_setup( &cfg );
    BOOSTONV2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    boostinv2_init( &boostinv2, &cfg );

    boostinv2_enable( &boostinv2 ); 
} 

Application Task

Changes the positive and negative output voltage. Positive output voltage goes from 5V to 15V. Negative output voltage goes from -5V to -15V

void application_task ( void )
{
     // Positive output voltage 
     log_printf( &logger, "VOUT = 6V\r\n");
     boostinv2_set_positive_voltage( &boostinv2, BOOSTINV2_POS_VOUT_6V );
     Delay_ms ( 1000 );
     Delay_ms ( 1000 );
     Delay_ms ( 1000 );
     log_printf( &logger, "VOUT = 8V\r\n");
     boostinv2_set_positive_voltage( &boostinv2, BOOSTINV2_POS_VOUT_8V );
     Delay_ms ( 1000 );
     Delay_ms ( 1000 );
     Delay_ms ( 1000 );
     log_printf( &logger, "VOUT = 12V\r\n");
     boostinv2_set_positive_voltage( &boostinv2, BOOSTINV2_POS_VOUT_12V );
     Delay_ms ( 1000 );
     Delay_ms ( 1000 );
     Delay_ms ( 1000 );
     log_printf( &logger, "VOUT = 14V\r\n");
     boostinv2_set_positive_voltage( &boostinv2, BOOSTINV2_POS_VOUT_14V );
     Delay_ms ( 1000 );
     Delay_ms ( 1000 );
     Delay_ms ( 1000 );
     log_printf( &logger, "VOUT = 12V\r\n");
     boostinv2_set_positive_voltage( &boostinv2, BOOSTINV2_POS_VOUT_12V );
     Delay_ms ( 1000 );
     Delay_ms ( 1000 );
     Delay_ms ( 1000 );
     log_printf( &logger, "VOUT = 8V\r\n");
     boostinv2_set_positive_voltage( &boostinv2, BOOSTINV2_POS_VOUT_8V );
     Delay_ms ( 1000 );
     Delay_ms ( 1000 );
     Delay_ms ( 1000 );

     // Negative output voltage 

     log_printf( &logger, "VOUT = -5V\r\n");
     boostinv2_set_negative_voltage( &boostinv2, BOOSTINV2_NEG_VOUT_5V );
     Delay_ms ( 1000 );
     Delay_ms ( 1000 );
     Delay_ms ( 1000 );
     log_printf( &logger, "VOUT = -7V\r\n");
     boostinv2_set_negative_voltage( &boostinv2, BOOSTINV2_NEG_VOUT_7V );
     Delay_ms ( 1000 );
     Delay_ms ( 1000 );
     Delay_ms ( 1000 );
     log_printf( &logger, "VOUT = -13V\r\n");
     boostinv2_set_negative_voltage( &boostinv2, BOOSTINV2_NEG_VOUT_13V );
     Delay_ms ( 1000 );
     Delay_ms ( 1000 );
     Delay_ms ( 1000 );
     log_printf( &logger, "VOUT = -7V\r\n");
     boostinv2_set_negative_voltage( &boostinv2, BOOSTINV2_NEG_VOUT_7V );
     Delay_ms ( 1000 );
     Delay_ms ( 1000 );
     Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Boostinv2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Magneto 12 Click

0

Magneto 12 Click is a compact add-on board that contains an accurate and reliable magnetic sensing device. This board features the A31315, a magnetic position sensor designed for on- and off-axis rotary and linear stroke position measurement from Allegro Microsystems. This sensor integrates vertical and planar Hall-effect elements with precision temperature-compensating circuitry to detect two out of three magnetic field components (X and Y). Using configurable signal processing (the user is allowed to process the output signal in analog or digital form), linearization and angle calculation allows the A31315 to accurately resolve the absolute rotary (full 360° and short-stroke <360°) or linear position of a moving magnetic target.

[Learn More]

Barometer 13 Click

0

Barometer 13 Click is a compact add-on board that measures air pressure in a specific environment. This board features the BMP585, a barometric pressure sensor from Bosch Sensortec. It has a nominal operating pressure range of 30 up to 125kPa and a temperature operating range from -40 to +85°C. The sensor provides true absolute pressure and temperature readings due to on-chip linearization and temperature compensation.

[Learn More]

Expand Click

0

This applicatioin use for expansion I/O lines

[Learn More]