TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (403 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (132 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140963 times)
  2. FAT32 Library (73514 times)
  3. Network Ethernet Library (58321 times)
  4. USB Device Library (48509 times)
  5. Network WiFi Library (44132 times)
  6. FT800 Library (43687 times)
  7. GSM click (30546 times)
  8. mikroSDK (29290 times)
  9. PID Library (27220 times)
  10. microSD click (26931 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Load cell Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.19

mikroSDK Library: 2.0.0.0

Category: Force

Downloaded: 320 times

Not followed.

License: MIT license  

Load cell Click is a weight measurement Click which utilizes a load cell element, in order to precisely measure the weight of an object. The Load Cell Click can be used with the strain gauge type of load cells and can measure up to ±20V or ±40V of differential voltage.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Load cell Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Load cell Click" changes.

Do you want to report abuse regarding "Load cell Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


LOAD CELL Click

Load cell Click is a weight measurement Click which utilizes a load cell element, in order to precisely measure the weight of an object. The Load Cell Click can be used with the strain gauge type of load cells and can measure up to ±20V or ±40V of differential voltage.

The Click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over SPI interface.>

loadcell_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : GPIO type

Software Support

We provide a library for the LoadCell Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for LoadCell Click driver.

Standard key functions :

  • Config Object Initialization function.

    void loadcell_cfg_setup ( loadcell_cfg_t *cfg );

  • Initialization function.

    LOADCELL_RETVAL loadcell_init ( loadcell_t ctx, loadcell_cfg_t cfg );

  • Click Default Configuration function.

    void loadcell_default_cfg ( loadcell_t *ctx );

Example key functions :

  • Read results of function.

    uint8_t loadcell_read_results ( loadcell_t ctx, uint8_t input_sel, uint32_t data_out );

  • Set rate function.

    void loadcell_set_rate ( loadcell_t *ctx, uint8_t rate_sel );

  • Check status of pin DO (do_pin).

    uint8_t loadcell_check_out ( loadcell_t *ctx );

  • Reset clock function.

    void loadcell_reset ( loadcell_t *ctx );

  • Set clock mode function.

    void loadcell_set_mode ( loadcell_t *ctx, uint8_t pwr_mode );

  • Function of messure and read results.

    void loadcell_tare ( loadcell_t ctx, uint8_t input_sel, loadcell_data_t cell_data );

  • Calibration function.

    uint8_t loadcell_calibration ( loadcell_t ctx, uint8_t input_sel, uint16_t cal_val, loadcell_data_t cell_data );

  • Get weight function.

    float loadcell_get_weight ( loadcell_t ctx, uint8_t input_sel, loadcell_data_t cell_data );

Examples Description

Load cell Click is a weight measurement Click which utilizes a load cell element, in order to precisely measure the weight of an object. The Load Cell Click can be used with the strain gauge type of load cells and can measure up to ±20V or ±40V of differential voltage.

The demo application is composed of two sections :

Application Init

Initializes GPIO driver and performs the device reset, after which the next conversion cycle will be for channel B with 32 gate value. This function also selects the frequency of internal oscillator to 10Hz. Sets tare the scale, calibrate scale and start measurements.


void application_init ( void )
{
    log_cfg_t log_cfg;
    loadcell_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    loadcell_cfg_setup( &cfg );
    LOADCELL_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    loadcell_init( &loadcell, &cfg );

    log_printf(&logger, "-------------------------\r\n");
    log_printf(&logger, "     Load cell Click     \r\n");
    log_printf(&logger, "-------------------------\r\n");
    Delay_ms ( 100 );

    loadcell_set_mode( &loadcell, LOADCELL_POWER_UP );
    Delay_ms ( 100 );

    loadcell_reset( &loadcell );
    Delay_ms ( 100 );

    loadcell_set_rate( &loadcell, LOADCELL_10HZ_INTERNAL_OSC );
    Delay_ms ( 100 );

    log_printf(&logger, "    Tare the scale :   Channel B,  Gate 32  \r\n");
    log_printf(&logger, "-------------------------\r\n");
    log_printf(&logger, " In the following 10 seconds please REMOVE all object from the scale.\r\n");
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf(&logger, "-------------------------\r\n");
    log_printf(&logger, "    Start tare scales    \r\n");
    loadcell_tare ( &loadcell, LOADCELL_CHANN_B_GATE_32_NEXT, &cell_data );
    Delay_ms ( 500 );

    log_printf(&logger, "-------------------------\r\n");
    log_printf(&logger, "    Tarring completed \r\n");

    log_printf(&logger, "-------------------------\r\n");
    log_printf(&logger, " In the following 10 seconds place 100g weight etalon on the scale for calibration purpose.\r\n");
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf(&logger, "-------------------------\r\n");
    log_printf(&logger, "    Start calibration    \r\n");

    if ( loadcell_calibration ( &loadcell, LOADCELL_CHANN_B_GATE_32_NEXT, LOADCELL_WEIGHT_100G, &cell_data ) == LOADCELL_GET_RESULT_OK )
    {
        log_printf(&logger, "-------------------------\r\n");
        log_printf(&logger, "    Calibration  Done    \r\n");

        log_printf(&logger, "- - - - - - - - - - - - -\r\n");
        log_printf(&logger, " In the following 10 seconds please REMOVE all object from the scale.\r\n");
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
    else
    {
        log_printf(&logger, "-------------------------\r\n");
        log_printf(&logger, "   Calibration  Error   \r\n");
        for ( ; ; );
    }

    log_printf(&logger, "-------------------------\r\n");
    log_printf(&logger, "   Start measurements :  \r\n");
    log_printf(&logger, "-------------------------\r\n");
}

Application Task

This is an example which demonstrates the use of Load Cell Click board. Display the measurement of scales in grams [ g ]. Results are being sent to the Usart Terminal where you can track their changes. All data logs write on USB uart changes for every 1 sec.


void application_task ( void )
{
    weight_val = loadcell_get_weight( &loadcell, LOADCELL_CHANN_B_GATE_32_NEXT, &cell_data );

    log_printf(&logger, "     Weight : %.2f\r\n", weight_val );

    Delay_ms ( 1000 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LoadCell

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

BLE 4 click

5

BLE 4 Click is fully embedded stand-alone Bluetooth 5.0 low energy connectivity module, equipped with the NINA-B312, an ultra-small, high-performing, standalone Bluetooth low energy module for easy integration of Bluetooth low energy connectivity (BLE) into various electronic devices.

[Learn More]

CC3100 click

1

CC3100 click is mikroBUS add-on board which caries TI's CC3100MOD WiFi module. Click board uses SPI or UART bus for communication with host MCU.

[Learn More]

Flash 11 Click

0

Flash 11 Click is a compact add-on board representing a highly reliable memory solution. This board features the AT25SF321B, a 32-Mbit SPI serial Flash memory with Dual I/O and Quad I/O support from Dialog Semiconductor. It is designed for applications in which the program code is shadowed from Flash memory into embedded or external RAM for execution and where small amounts of data are stored and updated locally in the Flash memory. It has a flexible and optimized erase architecture for code and data storage applications, non-volatile protection, three specialized protected programmable 256-byte OTP security registers, and a 64-bit factory programmable UID register.

[Learn More]