TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141317 times)
  2. FAT32 Library (74154 times)
  3. Network Ethernet Library (58737 times)
  4. USB Device Library (48834 times)
  5. Network WiFi Library (44544 times)
  6. FT800 Library (44119 times)
  7. GSM click (30857 times)
  8. mikroSDK (29699 times)
  9. PID Library (27359 times)
  10. microSD click (27273 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Load cell Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.19

mikroSDK Library: 2.0.0.0

Category: Force

Downloaded: 395 times

Not followed.

License: MIT license  

Load cell Click is a weight measurement Click which utilizes a load cell element, in order to precisely measure the weight of an object. The Load Cell Click can be used with the strain gauge type of load cells and can measure up to ±20V or ±40V of differential voltage.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Load cell Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Load cell Click" changes.

Do you want to report abuse regarding "Load cell Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


LOAD CELL Click

Load cell Click is a weight measurement Click which utilizes a load cell element, in order to precisely measure the weight of an object. The Load Cell Click can be used with the strain gauge type of load cells and can measure up to ±20V or ±40V of differential voltage.

The Click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over SPI interface.>

loadcell_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : GPIO type

Software Support

We provide a library for the LoadCell Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for LoadCell Click driver.

Standard key functions :

  • Config Object Initialization function.

    void loadcell_cfg_setup ( loadcell_cfg_t *cfg );

  • Initialization function.

    LOADCELL_RETVAL loadcell_init ( loadcell_t ctx, loadcell_cfg_t cfg );

  • Click Default Configuration function.

    void loadcell_default_cfg ( loadcell_t *ctx );

Example key functions :

  • Read results of function.

    uint8_t loadcell_read_results ( loadcell_t ctx, uint8_t input_sel, uint32_t data_out );

  • Set rate function.

    void loadcell_set_rate ( loadcell_t *ctx, uint8_t rate_sel );

  • Check status of pin DO (do_pin).

    uint8_t loadcell_check_out ( loadcell_t *ctx );

  • Reset clock function.

    void loadcell_reset ( loadcell_t *ctx );

  • Set clock mode function.

    void loadcell_set_mode ( loadcell_t *ctx, uint8_t pwr_mode );

  • Function of messure and read results.

    void loadcell_tare ( loadcell_t ctx, uint8_t input_sel, loadcell_data_t cell_data );

  • Calibration function.

    uint8_t loadcell_calibration ( loadcell_t ctx, uint8_t input_sel, uint16_t cal_val, loadcell_data_t cell_data );

  • Get weight function.

    float loadcell_get_weight ( loadcell_t ctx, uint8_t input_sel, loadcell_data_t cell_data );

Examples Description

Load cell Click is a weight measurement Click which utilizes a load cell element, in order to precisely measure the weight of an object. The Load Cell Click can be used with the strain gauge type of load cells and can measure up to ±20V or ±40V of differential voltage.

The demo application is composed of two sections :

Application Init

Initializes GPIO driver and performs the device reset, after which the next conversion cycle will be for channel B with 32 gate value. This function also selects the frequency of internal oscillator to 10Hz. Sets tare the scale, calibrate scale and start measurements.


void application_init ( void )
{
    log_cfg_t log_cfg;
    loadcell_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    loadcell_cfg_setup( &cfg );
    LOADCELL_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    loadcell_init( &loadcell, &cfg );

    log_printf(&logger, "-------------------------\r\n");
    log_printf(&logger, "     Load cell Click     \r\n");
    log_printf(&logger, "-------------------------\r\n");
    Delay_ms ( 100 );

    loadcell_set_mode( &loadcell, LOADCELL_POWER_UP );
    Delay_ms ( 100 );

    loadcell_reset( &loadcell );
    Delay_ms ( 100 );

    loadcell_set_rate( &loadcell, LOADCELL_10HZ_INTERNAL_OSC );
    Delay_ms ( 100 );

    log_printf(&logger, "    Tare the scale :   Channel B,  Gate 32  \r\n");
    log_printf(&logger, "-------------------------\r\n");
    log_printf(&logger, " In the following 10 seconds please REMOVE all object from the scale.\r\n");
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf(&logger, "-------------------------\r\n");
    log_printf(&logger, "    Start tare scales    \r\n");
    loadcell_tare ( &loadcell, LOADCELL_CHANN_B_GATE_32_NEXT, &cell_data );
    Delay_ms ( 500 );

    log_printf(&logger, "-------------------------\r\n");
    log_printf(&logger, "    Tarring completed \r\n");

    log_printf(&logger, "-------------------------\r\n");
    log_printf(&logger, " In the following 10 seconds place 100g weight etalon on the scale for calibration purpose.\r\n");
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf(&logger, "-------------------------\r\n");
    log_printf(&logger, "    Start calibration    \r\n");

    if ( loadcell_calibration ( &loadcell, LOADCELL_CHANN_B_GATE_32_NEXT, LOADCELL_WEIGHT_100G, &cell_data ) == LOADCELL_GET_RESULT_OK )
    {
        log_printf(&logger, "-------------------------\r\n");
        log_printf(&logger, "    Calibration  Done    \r\n");

        log_printf(&logger, "- - - - - - - - - - - - -\r\n");
        log_printf(&logger, " In the following 10 seconds please REMOVE all object from the scale.\r\n");
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
    else
    {
        log_printf(&logger, "-------------------------\r\n");
        log_printf(&logger, "   Calibration  Error   \r\n");
        for ( ; ; );
    }

    log_printf(&logger, "-------------------------\r\n");
    log_printf(&logger, "   Start measurements :  \r\n");
    log_printf(&logger, "-------------------------\r\n");
}

Application Task

This is an example which demonstrates the use of Load Cell Click board. Display the measurement of scales in grams [ g ]. Results are being sent to the Usart Terminal where you can track their changes. All data logs write on USB uart changes for every 1 sec.


void application_task ( void )
{
    weight_val = loadcell_get_weight( &loadcell, LOADCELL_CHANN_B_GATE_32_NEXT, &cell_data );

    log_printf(&logger, "     Weight : %.2f\r\n", weight_val );

    Delay_ms ( 1000 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LoadCell

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Compass 6 Click

0

Compass 6 Click is a compact add-on board perfect for implementation in applications such as an electronic compass. This board features the HSCDTD008A, a high-sensitivity geomagnetic sensor from ALPS Alpine.

[Learn More]

GNSS 18 Click

0

GNSS 18 Click is a compact add-on board designed for high-precision GNSS applications. This board features the SAM-M10Q-00B-00B, M10 standard precision GNSS module from u-blox, known for exceptional sensitivity and rapid acquisition of L1 GNSS signals. It supports concurrent reception of GPS, Galileo, GLONASS, and BeiDou B1C, with additional support for QZSS and SBAS. Featuring u-blox Super-S technology for improved dynamic position accuracy and low power consumption of 37mW in continuous tracking mode, it is ideal for battery-operated devices.

[Learn More]

Keylock click

1

Keylock click carries a processed sealed key lock mechanism that can be set in three different positions. The click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over the PWM, INT, and AN pin on the mikroBUSâ„¢ line.

[Learn More]