TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (404 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141112 times)
  2. FAT32 Library (73906 times)
  3. Network Ethernet Library (58554 times)
  4. USB Device Library (48725 times)
  5. Network WiFi Library (44376 times)
  6. FT800 Library (43977 times)
  7. GSM click (30721 times)
  8. mikroSDK (29478 times)
  9. PID Library (27304 times)
  10. microSD click (27132 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DC Motor 5 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.21

mikroSDK Library: 2.0.0.0

Category: Brushed

Downloaded: 310 times

Not followed.

License: MIT license  

DC MOTOR 5 Click carries the DRV8701 brushed DC motor gate driver from Texas Instruments.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DC Motor 5 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DC Motor 5 Click" changes.

Do you want to report abuse regarding "DC Motor 5 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


DC MOTOR 5 Click

DC MOTOR 5 Click carries the DRV8701 brushed DC motor gate driver from Texas Instruments.

dcmotor5_click.png

Click Product page


Click library

  • Author : Nikola Peric
  • Date : Feb 2022.
  • Type : PWM type

Software Support

We provide a library for the DcMotor5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for DcMotor5 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void dcmotor5_cfg_setup ( dcmotor5_cfg_t *cfg );

  • Initialization function.

    DCMOTOR5_RETVAL dcmotor5_init ( dcmotor5_t ctx, dcmotor5_cfg_t cfg );

Example key functions :

  • Function brakes the engine by setting IN1 ( PWM ) and IN2 ( INT ) pins on DC Motor 5 Click board.

    void dcmotor5_short_brake ( dcmotor5_t *ctx );

  • Function stops the engine by clearing IN1 ( PWM ) and IN2 ( INT ) pins on DC Motor 5 Click board.

    void dcmotor5_stop ( dcmotor5_t *ctx );

  • Function disables the engine by clearing SLEEP ( RST ) pin on DC Motor 5 Click board.

    void dcmotor5_enable ( dcmotor5_t *ctx );

Examples Description

This library contains API for the DC Motor 5 Click driver. This application enables usage of brushed DC motor 5 gate driver.

The demo application is composed of two sections :

Application Init

Initializes GPIO, PWM and logger and enables the Click board.


void application_init ( void )
{
    log_cfg_t log_cfg;
    dcmotor5_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    dcmotor5_cfg_setup( &cfg );
    DCMOTOR5_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    dcmotor5_init( &dcmotor5, &cfg );

    log_printf( &logger, " Initialization  PWM \r\n" );

    dcmotor5_pwm_start( &dcmotor5 );
    dcmotor5_enable ( &dcmotor5 );
    Delay_ms ( 500 );
    log_printf( &logger, "---------------------\r\n" );
    log_info( &logger, "---- Application Task ----" );
}

Application Task

This is a example which demonstrates the use of DC Motor 5 Click board. DC Motor 5 Click controls DC Motor speed via PWM interface. It shows moving in the both directions from slow to fast speed and from fast to slow speed. Results are being sent to the Usart Terminal where you can track their changes.


void application_task ( )
{    
    static float duty;
    static uint8_t n_cnt;


    dcmotor5_clockwise ( &dcmotor5 );
    log_printf( &logger, "\r\n> CLOCKWISE <\r\n" );
    dcmotor5_enable ( &dcmotor5 );

    for ( n_cnt = 10; n_cnt > 0; n_cnt--  )
    {
        duty = ( float ) n_cnt ;
        duty /= 10;
        log_printf( &logger, " >" );
        dcmotor5_set_duty_cycle( &dcmotor5, duty );
        Delay_ms ( 500 );
    }
    for ( n_cnt = 1; n_cnt <= 10; n_cnt++ )
    {
        duty = ( float ) n_cnt ;
        duty /= 10;
        log_printf( &logger, " <" );
        dcmotor5_set_duty_cycle( &dcmotor5,  duty );
        Delay_ms ( 500 );
    }

    log_printf( &logger, "\r\n * Pull break *\r\n" );
    dcmotor5_short_brake( &dcmotor5 );
    Delay_ms ( 1000 );

    dcmotor5_counter_clockwise ( &dcmotor5 );
    log_printf( &logger, "\r\n> COUNTER CLOCKWISE <\r\n" );

    for ( n_cnt = 1; n_cnt <= 10; n_cnt++  )
    {
        duty = ( float ) n_cnt ;
        duty /= 10;
        dcmotor5_set_duty_cycle( &dcmotor5, duty );
        log_printf( &logger, " >" );
        Delay_ms ( 500 );
    }
    for ( n_cnt = 10; n_cnt > 0; n_cnt-- )
    {
        duty = ( float ) n_cnt ;
        duty /= 10;
        dcmotor5_set_duty_cycle( &dcmotor5,  duty );
        log_printf( &logger, " <" );
        Delay_ms ( 500 );
    }

}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommended) or found on LibStock page or mikroE GitHub account.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DcMotor5

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Proximity 17 Click

0

Proximity 17 Click is a compact add-on board that contains a close-range proximity sensing solution. This board features the TMD2635, a miniature proximity sensor module from ams AG. The TMD2635 features advanced proximity measurement in a tiny and thin optical land grid array module that incorporates a 940nm infrared vertical-cavity surface-emitting laser (IR VCSEL) factory calibrated for IR proximity response. It also offers advanced crosstalk noise cancellation through a wide range of offset adjustments through a digital fast-mode I2C interface to compensate for unwanted IR energy reflection at the sensor. This Click board™ is suitable for consumer and industrial applications.

[Learn More]

VCT Monitor click

5

VCT Monitor Click is a compact add-on board that contains a highly integrated monitoring solution without compromising accuracy. This board features the LTC2990, an I2C configurable high-performance temperature, voltage, and current monitor from Analog Devices.

[Learn More]

HeartRate 8 click

5

Heart Rate 8 click is an optical biosensor Click board, designed for heart-rate monitoring (HRM). This Click board employs a specialized sensor that incorporates three LED drivers and two photo-sensing elements, sensitive to green and IR light.

[Learn More]