TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141291 times)
  2. FAT32 Library (74089 times)
  3. Network Ethernet Library (58715 times)
  4. USB Device Library (48826 times)
  5. Network WiFi Library (44525 times)
  6. FT800 Library (44073 times)
  7. GSM click (30805 times)
  8. mikroSDK (29658 times)
  9. PID Library (27355 times)
  10. microSD click (27251 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LED Driver 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: LED Drivers

Downloaded: 321 times

Not followed.

License: MIT license  

LED Driver 4 Click is a form of a high-efficiency boost converter that is ideally suited for driving an array of white LEDs. The driver has the ability to dim the connected LED array, without producing any noise on the output. The Click board is capable of driving a LED array with up to 26V, providing a constant current to the LED segments.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LED Driver 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LED Driver 4 Click" changes.

Do you want to report abuse regarding "LED Driver 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


LED Driver 4 Click

LED Driver 4 Click is a form of a high-efficiency boost converter that is ideally suited for driving an array of white LEDs. The driver has the ability to dim the connected LED array, without producing any noise on the output. The Click board is capable of driving a LED array with up to 26V, providing a constant current to the LED segments.

leddriver4_click.png

Click Product page


Click library

  • Author : Nikola Peric
  • Date : Feb 2022.
  • Type : PWM type

Software Support

We provide a library for the LedDriver4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for LedDriver4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void leddriver4_cfg_setup ( leddriver4_cfg_t *cfg );

  • Initialization function.

    LEDDRIVER4_RETVAL leddriver4_init ( leddriver4_t ctx, leddriver4_cfg_t cfg );

Example key functions :

  • Generic sets PWM duty cycle.

    void leddriver4_set_duty_cycle ( leddriver4_t *ctx, float duty_cycle );

  • Stop PWM module.

    void leddriver4_pwm_stop ( leddriver4_t *ctx );

  • Start PWM module.

    leddriver4_pwm_start ( leddriver4_t *ctx );

Examples Description

This Click has the ability to dim the connected LED array, without producing any noise on the output.

The demo application is composed of two sections :

Application Init

Initializes the GPIO driver and configures the PWM peripheral for controlling the LED array intensity.


void application_init ( void )
{
    log_cfg_t log_cfg;
    leddriver4_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    leddriver4_cfg_setup( &cfg );
    LEDDRIVER4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    leddriver4_init( &leddriver4, &cfg );

    leddriver4_set_duty_cycle ( &leddriver4, 0.0 );
    leddriver4_pwm_start( &leddriver4 );
    log_info( &logger, "---- Application Task ----" );
    Delay_ms ( 500 );
}

Application Task

Increases and decreases LED array intensity ( first increases light intensity to the maximum and then decreases to the minimum ). Results are being sent to the Usart Terminal where you can track their changes.


void application_task ( void )
{
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;

    leddriver4_set_duty_cycle ( &leddriver4, duty );
    log_printf( &logger, "Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );
    Delay_ms ( 500 );

    if ( 10 == duty_cnt ) 
    {
        duty_inc = -1;
    }
    else if ( 0 == duty_cnt ) 
    {
        duty_inc = 1;
    }
    duty_cnt += duty_inc;
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LedDriver4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

GNSS 13 Click

0

GNSS 13 Click is a compact add-on board that provides positioning, navigation, and timing services. This board features the LG77LICMD, a global-region standard-precision GNSS module from Quectel Wireless Solutions. This module utilizes concurrent reception of up to three GNSS systems (GPS, GLONASS (or BeiDou), and Galileo), maximizing position availability, especially under challenging conditions such as deep urban canyons. By combining EASY™ (Embedded Assist System), an advanced AGNSS feature, with GLP (GNSS Low Power), a low-power mode, the LG77LICMD module achieves high performance, low power consumption, and fully meets industrial standards. It also has a configurable host interface, anti-jamming technology, and a multi-tone active interference canceller.

[Learn More]

ROTARY B Click

0

Rotary B Click carries a 15-pulse incremental rotary encoder with detents, surrounded by a ring of 16 blue LEDs. It’s a perfect solution for adding a precision input knob to your design. The encoder outputs A and B signals (out of phase to each other); the knob also acts as a push-button which sends an interrupt to the target board MCU. The LED ring is controlled through SPI lines (CS, SCK, MISO, MOSI). Rotary Click™ can be used with either a 3.3V or 5V power supply.

[Learn More]

Interrupts on PIC32MX460F512L

0

This example demonstrates how to setup:
- External INT2 interrupt on PORTE.9 pin
- UART RX event interrupt

[Learn More]