TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142043 times)
  2. FAT32 Library (75269 times)
  3. Network Ethernet Library (59483 times)
  4. USB Device Library (49502 times)
  5. Network WiFi Library (45278 times)
  6. FT800 Library (44898 times)
  7. GSM click (31422 times)
  8. mikroSDK (30424 times)
  9. microSD click (27783 times)
  10. PID Library (27619 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LED Driver 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: LED Drivers

Downloaded: 395 times

Not followed.

License: MIT license  

LED Driver 4 Click is a form of a high-efficiency boost converter that is ideally suited for driving an array of white LEDs. The driver has the ability to dim the connected LED array, without producing any noise on the output. The Click board is capable of driving a LED array with up to 26V, providing a constant current to the LED segments.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LED Driver 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LED Driver 4 Click" changes.

Do you want to report abuse regarding "LED Driver 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


LED Driver 4 Click

LED Driver 4 Click is a form of a high-efficiency boost converter that is ideally suited for driving an array of white LEDs. The driver has the ability to dim the connected LED array, without producing any noise on the output. The Click board is capable of driving a LED array with up to 26V, providing a constant current to the LED segments.

leddriver4_click.png

Click Product page


Click library

  • Author : Nikola Peric
  • Date : Feb 2022.
  • Type : PWM type

Software Support

We provide a library for the LedDriver4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for LedDriver4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void leddriver4_cfg_setup ( leddriver4_cfg_t *cfg );

  • Initialization function.

    LEDDRIVER4_RETVAL leddriver4_init ( leddriver4_t ctx, leddriver4_cfg_t cfg );

Example key functions :

  • Generic sets PWM duty cycle.

    void leddriver4_set_duty_cycle ( leddriver4_t *ctx, float duty_cycle );

  • Stop PWM module.

    void leddriver4_pwm_stop ( leddriver4_t *ctx );

  • Start PWM module.

    leddriver4_pwm_start ( leddriver4_t *ctx );

Examples Description

This Click has the ability to dim the connected LED array, without producing any noise on the output.

The demo application is composed of two sections :

Application Init

Initializes the GPIO driver and configures the PWM peripheral for controlling the LED array intensity.


void application_init ( void )
{
    log_cfg_t log_cfg;
    leddriver4_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    leddriver4_cfg_setup( &cfg );
    LEDDRIVER4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    leddriver4_init( &leddriver4, &cfg );

    leddriver4_set_duty_cycle ( &leddriver4, 0.0 );
    leddriver4_pwm_start( &leddriver4 );
    log_info( &logger, "---- Application Task ----" );
    Delay_ms ( 500 );
}

Application Task

Increases and decreases LED array intensity ( first increases light intensity to the maximum and then decreases to the minimum ). Results are being sent to the Usart Terminal where you can track their changes.


void application_task ( void )
{
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;

    leddriver4_set_duty_cycle ( &leddriver4, duty );
    log_printf( &logger, "Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );
    Delay_ms ( 500 );

    if ( 10 == duty_cnt ) 
    {
        duty_inc = -1;
    }
    else if ( 0 == duty_cnt ) 
    {
        duty_inc = 1;
    }
    duty_cnt += duty_inc;
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LedDriver4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Smoke 2 Click

0

Smoke 2 Click is a compact add-on board that contains the most efficient version of the smoke detector. This board features the ADPD188BI, a complete photometric system for smoke detection using optical dual-wavelength technology from Analog Devices.

[Learn More]

Magneto 12 Click

0

Magneto 12 Click is a compact add-on board that contains an accurate and reliable magnetic sensing device. This board features the A31315, a magnetic position sensor designed for on- and off-axis rotary and linear stroke position measurement from Allegro Microsystems. This sensor integrates vertical and planar Hall-effect elements with precision temperature-compensating circuitry to detect two out of three magnetic field components (X and Y). Using configurable signal processing (the user is allowed to process the output signal in analog or digital form), linearization and angle calculation allows the A31315 to accurately resolve the absolute rotary (full 360° and short-stroke <360°) or linear position of a moving magnetic target.

[Learn More]

Weather Click

0

Weather Click carries BME280 integrated environmental unit from Bosch.

[Learn More]