TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (404 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (132 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140993 times)
  2. FAT32 Library (73526 times)
  3. Network Ethernet Library (58328 times)
  4. USB Device Library (48516 times)
  5. Network WiFi Library (44139 times)
  6. FT800 Library (43699 times)
  7. GSM click (30548 times)
  8. mikroSDK (29309 times)
  9. PID Library (27220 times)
  10. microSD click (26934 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LED Driver 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: LED Drivers

Downloaded: 257 times

Not followed.

License: MIT license  

LED Driver 4 Click is a form of a high-efficiency boost converter that is ideally suited for driving an array of white LEDs. The driver has the ability to dim the connected LED array, without producing any noise on the output. The Click board is capable of driving a LED array with up to 26V, providing a constant current to the LED segments.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LED Driver 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LED Driver 4 Click" changes.

Do you want to report abuse regarding "LED Driver 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


LED Driver 4 Click

LED Driver 4 Click is a form of a high-efficiency boost converter that is ideally suited for driving an array of white LEDs. The driver has the ability to dim the connected LED array, without producing any noise on the output. The Click board is capable of driving a LED array with up to 26V, providing a constant current to the LED segments.

leddriver4_click.png

Click Product page


Click library

  • Author : Nikola Peric
  • Date : Feb 2022.
  • Type : PWM type

Software Support

We provide a library for the LedDriver4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for LedDriver4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void leddriver4_cfg_setup ( leddriver4_cfg_t *cfg );

  • Initialization function.

    LEDDRIVER4_RETVAL leddriver4_init ( leddriver4_t ctx, leddriver4_cfg_t cfg );

Example key functions :

  • Generic sets PWM duty cycle.

    void leddriver4_set_duty_cycle ( leddriver4_t *ctx, float duty_cycle );

  • Stop PWM module.

    void leddriver4_pwm_stop ( leddriver4_t *ctx );

  • Start PWM module.

    leddriver4_pwm_start ( leddriver4_t *ctx );

Examples Description

This Click has the ability to dim the connected LED array, without producing any noise on the output.

The demo application is composed of two sections :

Application Init

Initializes the GPIO driver and configures the PWM peripheral for controlling the LED array intensity.


void application_init ( void )
{
    log_cfg_t log_cfg;
    leddriver4_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    leddriver4_cfg_setup( &cfg );
    LEDDRIVER4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    leddriver4_init( &leddriver4, &cfg );

    leddriver4_set_duty_cycle ( &leddriver4, 0.0 );
    leddriver4_pwm_start( &leddriver4 );
    log_info( &logger, "---- Application Task ----" );
    Delay_ms ( 500 );
}

Application Task

Increases and decreases LED array intensity ( first increases light intensity to the maximum and then decreases to the minimum ). Results are being sent to the Usart Terminal where you can track their changes.


void application_task ( void )
{
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;

    leddriver4_set_duty_cycle ( &leddriver4, duty );
    log_printf( &logger, "Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );
    Delay_ms ( 500 );

    if ( 10 == duty_cnt ) 
    {
        duty_inc = -1;
    }
    else if ( 0 == duty_cnt ) 
    {
        duty_inc = 1;
    }
    duty_cnt += duty_inc;
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LedDriver4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

WiFi 9 click

5

WiFi 9 Click is fully embedded stand-alone Wi-Fi module, equipped with the PAN9420 a 2.4 GHz ISM band Wi-Fi-embedded module which includes a wireless radio and an MCU for easy integration of Wi-Fi connectivity into various electronic devices.

[Learn More]

B102C Click

0

B102C Click is a compact add-on board designed for Bluetooth 5.0 (BLE) communication in various wireless applications. This board features the B102C, a Bluetooth module from Amphenol based on the Realtek RTL8762CMF chip. The board offers BLE v5.0 support, a 20MHz Arm® Cortex® M4F processor, and an integrated antenna for 2.4GHz communication, with low-power modes for optimal energy efficiency. It includes UART and USB Type-C connectivity, a PROG header for debugging, and fully programmable GPIOs.

[Learn More]

Altitude 6 Click

0

Altitude 6 Click is a compact add-on board that allows height measurement of an object or point related to sea level or ground level. This board features the MS5611-01BA03, a high-resolution barometric pressure sensor optimized for altimeter applications with an altitude resolution of 10 cm from TE Connectivity. It consists of a high linearity pressure sensor and an ultra-low power 24 bit ΔΣ ADC with internal factory calibrated coefficients. Also, it provides a precise digital 24-bit pressure and temperature value, different operation modes, and a configurable host interface that supports both SPI and I2C serial communication allowing the user to optimize for conversion speed and current consumption. The high accuracy and stability of both pressure and temperature signal of the MS5611-01BA03 make this Click board™ suitable for height sensing in medical and consumer applications, indoor navigation, mobile altimeter or barometer systems, and many more.

[Learn More]