TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (385 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139845 times)
  2. FAT32 Library (72209 times)
  3. Network Ethernet Library (57392 times)
  4. USB Device Library (47740 times)
  5. Network WiFi Library (43364 times)
  6. FT800 Library (42700 times)
  7. GSM click (29980 times)
  8. mikroSDK (28440 times)
  9. PID Library (26989 times)
  10. microSD click (26398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

H-Bridge 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.19

mikroSDK Library: 2.0.0.0

Category: Brushed

Downloaded: 225 times

Not followed.

License: MIT license  

H-Bridge 3 Click is designed for the control of small DC motors and inductive loads, it features TLE9201SG a general purpose 6A H-Bridge perfectly suited for industrial and automotive applications. This IC meets the harsh automotive environmental conditions and it is qualified in accordance with the AEC-Q100 standard, also has set of features such as the short circuit and over-temperature protection, under-voltage protection, detailed SPI diagnosis or simple error flag and fully 3.3/5.5V compatible logic inputs.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "H-Bridge 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "H-Bridge 3 Click" changes.

Do you want to report abuse regarding "H-Bridge 3 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


H Bridge 3 Click

H-Bridge 3 Click is designed for the control of small DC motors and inductive loads, it features TLE9201SG a general purpose 6A H-Bridge perfectly suited for industrial and automotive applications. This IC meets the harsh automotive environmental conditions and it is qualified in accordance with the AEC-Q100 standard, also has set of features such as the short circuit and over-temperature protection, under-voltage protection, detailed SPI diagnosis or simple error flag and fully 3.3/5.5V compatible logic inputs.

hbridge3_click.png

Click Product page


Click library

  • Author : Nikola Peric
  • Date : Feb 2022.
  • Type : PWM type

Software Support

We provide a library for the HBridge3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for HBridge3 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void hbridge3_cfg_setup ( hbridge3_cfg_t *cfg );

  • Initialization function.

    HBRIDGE3_RETVAL hbridge3_init ( hbridge3_t ctx, hbridge3_cfg_t cfg );

  • Click Default Configuration function.

    void hbridge3_default_cfg ( hbridge3_t *ctx );

Example key functions :

  • This function sets the PWM duty cycle.

    void hbridge3_set_duty_cycle ( hbridge3_t *ctx, pwm_data_t duty_cycle );

  • This function sends SPI command and receives response to command sent

    uint8_t hbridge3_spi ( hbridge3_t *ctx, uint8_t spi_command );

  • Generic SPI transfer, for sending and receiving packages.

    void hbridge3_generic_transfer ( hbridge3_t ctx, spi_master_transfer_data_t block );

Examples Description

H-bridge in general, allows the current to flow in one or another direction. This Click is used for drive a H-Bridge motor by changing output states. The outputs can be pulse width modulated at frequencies up to 20kHz by means of PWM/DIR control.

The demo application is composed of two sections :

Application Init

Initializes SPI and LOG modules, AN, RST, CS and PWM pins


void application_init ( void )
{
    log_cfg_t log_cfg;
    hbridge3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    hbridge3_cfg_setup( &cfg );
    HBRIDGE3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    hbridge3_init( &hbridge3, &cfg );
    Delay_ms ( 500 );

    hbridge3_pwm_start( &hbridge3 );
    log_info( &logger, "---- Application Task ----" );
    log_printf( &logger, "> CLOCKWISE <\r\n" );
}

Application Task

This example demonstrates the use of H-Bridge 3 Click board, by running dc motor in both directions - increasing and decreasing PWM duty cycle. Results are being sent to the Usart Terminal where you can track their changes.


void application_task ( void )
{
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;


    hbridge3_set_duty_cycle ( &hbridge3, duty );
    log_printf( &logger, " Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );
    Delay_ms ( 500 );

    if ( 10 == duty_cnt ) 
    {
        duty_inc = -1;
    }
    else if ( 0 == duty_cnt ) 
    {
        duty_inc = 1;

        if ( motor_direction == 1 )
        {
            log_printf( &logger, "> COUNTER CLOCKWISE <\r\n" );
            motor_direction = 0;
             hbridge3_dir_set ( &hbridge3 , 0 );
        }
        else if ( motor_direction == 0 )
        {
            log_printf( &logger, "> CLOCKWISE <\r\n" );
            motor_direction = 1;
            hbridge3_dir_set ( &hbridge3 , 1 );
        }
    }
    duty_cnt += duty_inc;
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.HBridge3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Altitude 4 click

5

Altitude 4 Click introduces an absolute pressure sensor with digital output for low-cost applications labeled as NPA-201. The NovaSensor NPA-201 Digital Output Absolute Pressure Sensor provides low power consumption and compact size, making it ideal for battery-powered and mobile applications or any application where size is a constraint.

[Learn More]

Step Down 3 Click

0

Step Down 3 Click is a compact add-on board that steps down the voltage from its input to its output. This board features the ST1PS03, a nano-quiescent miniaturized synchronous step-down converter with a load switch from STMicroelectronics. The ST1PS03 can provide up to 400mA output current with an input voltage ranging from 1.8V to 5.5V, specifically designed for applications where high efficiency is crucial. It also embeds a controlled switch accessible from auxiliary channel input to supply a subsystem, output voltage from 1.6V to 3.3V set using three digital control inputs, and a Power Good signal to indicate stabilized output voltages.

[Learn More]

I2C to SPI Click

0

I2C to SPi Click is an all-in-one solution which allows serving as an interface between a standard I2C-bus of a microcontroller and an SPi bus, which allows the microcontroller to communicate directly with SPi devices through its I2C-bus. It is equipped with the stacking headers, so it can be easily connected.

[Learn More]