TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141642 times)
  2. FAT32 Library (74664 times)
  3. Network Ethernet Library (59129 times)
  4. USB Device Library (49175 times)
  5. Network WiFi Library (44942 times)
  6. FT800 Library (44465 times)
  7. GSM click (31122 times)
  8. mikroSDK (30044 times)
  9. microSD click (27531 times)
  10. PID Library (27515 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DSP Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Signal processing

Downloaded: 523 times

Not followed.

License: MIT license  

DSP Click is a compact add-on board that contains a multi-effects digital signal processor. This board features the V1000, a complete multi-effects audio DSP with ultra-high quality audio performance in a rapid ‘time-to-market’ solution from Coolaudio. The V1000 includes its integrated RAM with 16 built-in multi-effects and reverb controlled via I/O pins or I2C interface. Combined with a low-cost A/D-D/A codec like the V4220, this Click board™ provides an ultra-low cost FX solution. This Click board™ is suitable for applications as a standalone audio player, PC accessories, and Hi-Tech toys, conventional consumer electronic devices, and many more.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DSP Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DSP Click" changes.

Do you want to report abuse regarding "DSP Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


DSP Click

DSP Click is a compact add-on board that contains a multi-effects digital signal processor. This board features the V1000, a complete multi-effects audio DSP with ultra-high quality audio performance in a rapid ‘time-to-market’ solution from Coolaudio. The V1000 includes its integrated RAM with 16 built-in multi-effects and reverb controlled via I/O pins or I2C interface. Combined with a low-cost A/D-D/A codec like the V4220, this Click board™ provides an ultra-low cost FX solution.

dsp_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Nov 2020.
  • Type : GPIO type

Software Support

We provide a library for the Dsp Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Library Description

This library contains API for Dsp Click driver.

Standard key functions :

Config Object Initialization function.

void dsp_cfg_setup ( dsp_cfg_t *cfg );

Initialization function.

err_t dsp_init ( dsp_t *ctx, dsp_cfg_t *cfg );

Click Default Configuration function.

void dsp_default_cfg ( dsp_t *ctx );

Example key functions :

DSP reverb and multi-effects setting function.

dsp_retval_t dsp_set_effect ( dsp_t *ctx, uint8_t effects );

DSP power on the device function.

void dsp_power_on ( dsp_t *ctx );

DSP reset the device function.

void dsp_reset ( dsp_t *ctx );

Examples Description

This application controls reverb and multi-effects Digital Multi-Effects DSP provides different sound performance of the DSP Click.

The demo application is composed of two sections :

Application Init

Initializes GPIO driver, set the default configuration and start to write log.

void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    dsp_cfg_t dsp_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_printf( &logger, "\r\n" );
    log_info( &logger, " Application Init " );

    // Click initialization.

    dsp_cfg_setup( &dsp_cfg );
    DSP_MAP_MIKROBUS( dsp_cfg, MIKROBUS_1 );
    if ( dsp_init( &dsp, &dsp_cfg ) == DIGITAL_OUT_UNSUPPORTED_PIN ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    dsp_default_cfg ( &dsp );   
    log_info( &logger, " Application Task \r\n" );
    Delay_ms ( 100 );

    log_printf( &logger, "-------------------------------\r\n" );
    log_printf( &logger, "           DSP Click           \r\n" );
    log_printf( &logger, "-------------------------------\r\n" );
    log_printf( &logger, "     Digital Multi-Effects     \r\n" );
}

Application Task

This is an example that shows the use of a DSP Click board. In this example, we change different sound effects such as multiple reverbs, echo, phaser, chorus, flanger, etc. every 10 sec. Results are being sent to the Usart Terminal where you can track their changes.

void application_task ( void ) {
    log_printf( &logger, "-------------------------------\r\n" );
    dsp_set_effect( &dsp, effects );
    display_effects( );

    effects++;
    if ( effects > DSP_SET_EFFECT_DELAY1 ) {
        effects = DSP_SET_EFFECT_MEDIUM;
    }

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );  
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Dsp

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all Mikroelektronika compilers.


ALSO FROM THIS AUTHOR

Current Limit 7 Click

0

Current Limit 7 Click is a compact add-on board representing a current-limiting solution. This board features the MAX14575A, an adjustable current-limit switch from Analog Devices. This Click board™ features internal current limiting to prevent damage to host devices due to faulty load conditions, has a low 32mΩ on-resistance, and operates from a 2.3V to 5.5V input voltage range. Also, the current limit is adjustable from 250mA to 2.5A programmed through AD5272 digital rheostat and set via onboard range switch. This Click board™ is suitable for applications in portable equipment and condition monitoring or power supplies, protecting them in short circuits or other overload conditions.

[Learn More]

nRF C click - Example

0

This is a sample program which demonstrates the use of nRF C click. Programmer uses RF module for communication between two development systems. Each module can be used as transmitter and receiver.

[Learn More]

DIGI POT 14 Click

0

DIGI POT 14 Click is a compact add-on board that contains a digitally controlled potentiometer. This board features the TPL0102, a dual-channel digital potentiometer with non-volatile memory from Texas Instruments. It is a 100K resistance end-to-end potentiometer with a 256-position resolution, where the wiper position can be stored in EEPROM. It can operate from both 3.3V and 5V power supplies and provides a typical 92ppm/ºC end-to-end nominal resistance temperature coefficient and only 4ppm/ºC ratiometric.

[Learn More]