TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (403 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (132 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140964 times)
  2. FAT32 Library (73515 times)
  3. Network Ethernet Library (58321 times)
  4. USB Device Library (48509 times)
  5. Network WiFi Library (44132 times)
  6. FT800 Library (43687 times)
  7. GSM click (30546 times)
  8. mikroSDK (29291 times)
  9. PID Library (27220 times)
  10. microSD click (26931 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

CAN Bus Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: CAN

Downloaded: 356 times

Not followed.

License: MIT license  

CAN Bus Click is a compact add-on board that provides a link between the CAN protocol controller and the physical wires of the bus lines in a control area network (CAN). This board features the MAX13054, an industry-standard, high-speed CAN transceiver with extended ±80V fault protection from Maxim Integrated.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "CAN Bus Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "CAN Bus Click" changes.

Do you want to report abuse regarding "CAN Bus Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


CAN Bus Click

CAN Bus Click is a compact add-on board that provides a link between the CAN protocol controller and the physical wires of the bus lines in a control area network (CAN). This board features the MAX13054, an industry-standard, high-speed CAN transceiver with extended ±80V fault protection from Maxim Integrated.

can_bus_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Apr 2021.
  • Type : UART type

Software Support

We provide a library for the CanBus Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Library Description

This library contains API for CanBus Click driver.

Standard key functions :

  • canbus_cfg_setup Config Object Initialization function.

    void canbus_cfg_setup ( canbus_cfg_t *cfg );
  • canbus_init Initialization function.

    CANBUS_RETVAL canbus_init ( canbus_t *ctx, canbus_cfg_t *cfg );
  • canbus_default_cfg Click Default Configuration function.

    void canbus_default_cfg ( canbus_t *ctx );

Example key functions :

  • canbus_send_data CAN Bus send data function.

    err_t canbus_send_data ( canbus_t *ctx, char *tx_data );
  • canbus_set_high_speed_mode CAN Bus high speed mode function.

    err_t canbus_set_high_speed_mode ( canbus_t *ctx );
  • canbus_set_low_current_standby_mode CAN Bus low current standby mode function.

    err_t canbus_set_low_current_standby_mode ( canbus_t *ctx );

Example Description

This library contains API for CAN Bus Click board™. This example transmits/receives and processes data from CAN Bus Click. The library initializes and defines the UART bus drivers to transmit or receive data.

The demo application is composed of two sections :

Application Init

Initializes driver, wake-up module, and set high-speed operation mode.


void application_init ( void ) {
    log_cfg_t log_cfg;        /**< Logger config object. */
    canbus_cfg_t canbus_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    canbus_cfg_setup( &canbus_cfg );
    CANBUS_MAP_MIKROBUS( canbus_cfg, MIKROBUS_1 );
    err_t init_flag  = canbus_init( &canbus, &canbus_cfg );
    if ( init_flag == UART_ERROR ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    canbus_default_cfg ( &canbus );
    app_buf_len = 0;
    app_buf_cnt = 0;
    log_info( &logger, " Application Task " );
    Delay_ms ( 100 );

    canbus_set_high_speed_mode( &canbus );
    Delay_ms ( 100 );

    #ifdef TRANSMIT

        log_printf( &logger, "    Send data:    \r\n" );
        log_printf( &logger, "      MikroE      \r\n" );
        log_printf( &logger, "------------------\r\n" );
        log_printf( &logger, "  Transmit data   \r\n" );
        Delay_ms ( 1000 );

    #endif

    #ifdef RECIEVER

        log_printf( &logger, "   Receive data  \r\n" );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );

    #endif

    log_printf( &logger, "------------------\r\n" );
}

Application Task

Transmitter/Receiver task depends on uncommented code. Receiver logging each received byte to the UART for data logging, while transmitted send messages every 2 seconds.


void application_task ( void ) {
   #ifdef TRANSMIT

        canbus_send_data( &canbus, demo_message );
        log_printf( &logger, "\t%s", demo_message );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        log_printf( &logger, "------------------\r\n" );    

    #endif

    #ifdef RECIEVER

        canbus_process( );

        if ( app_buf_len > 0 ) {
            log_printf( &logger, "%s", app_buf );
            canbus_clear_app_buf(  );
        }

    #endif
}

Additional Function

  • canbus_clear_app_buf Function clears memory of app_buf.

    static void canbus_clear_app_buf ( void );
  • canbus_process The general process of collecting presponce that a module sends.

    static err_t canbus_process ( void );

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.CanBus

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all Mikroelektronika compilers.


ALSO FROM THIS AUTHOR

MagAccel Click

0

Mag&Accel Click is a compact add-on board representing a moving object and magnetic switch as a single solution. This board features the NMH1000, a Hall-effect magnetic field switch, and the FXLS8974CF, a 3-axis low-g accelerometer, both from NXP Semiconductor.

[Learn More]

Flash 3 click

8

Flash 3 click is a mikroBUS add-on board for adding more Flash Memory to your target board microcontroller. It carries an ISSI IS25LP128 IC with 128 Mbit capacity.

[Learn More]

VU Meter Click

0

VU Meter Click is a compact add-on board representing a volume unit meter that displays the intensity of an audio signal. This board features the LM3914, a monolithic integrated circuit that senses analog voltage levels and drives a 10-segment bar graph display from Texas Instruments. This Click board™ is manufactured with a sound detecting device (microphone), Op-Amp, and the LM3914, which gleams the bar graph display according to the sound’s quality. The LM3914 is an analog-controlled driver meaning it can control (turn ON or OFF) a display by an analog input voltage and eliminates the need for additional programming.

[Learn More]