TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139566 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57256 times)
  4. USB Device Library (47616 times)
  5. Network WiFi Library (43220 times)
  6. FT800 Library (42566 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26933 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

BT-EZ Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: BT/BLE

Downloaded: 157 times

Not followed.

License: MIT license  

The BT-EZ Click is a Click board™ which provide BLE connectivity for any embedded application.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "BT-EZ Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "BT-EZ Click" changes.

Do you want to report abuse regarding "BT-EZ Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


BT-EZ Click

The BT-EZ Click is a Click board™ which provide BLE connectivity for any embedded application.

btez_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jun 2020.
  • Type : UART type

Software Support

We provide a library for the BtEz Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for BtEz Click driver.

Standard key functions :

  • Config Object Initialization function.

    void btez_cfg_setup ( btez_cfg_t *cfg );

  • Initialization function.

    BTEZ_RETVAL btez_init ( btez_t ctx, btez_cfg_t cfg );

Example key functions :

  • Generic write function.

    void btez_generic_write ( btez_t ctx, char data_buf, uint16_t len );

  • Generic read function.

    int32_t btez_generic_read ( btez_t ctx, char data_buf, uint16_t max_len );

  • Send command function.

    void btez_send_command ( btez_t ctx, char command );

Examples Description

This example reads and processes data from BT-EZ clicks.

The demo application is composed of two sections :

Application Init

Initializes the driver and configures the Click board.


void application_init ( void )
{
    log_cfg_t log_cfg;
    btez_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    btez_cfg_setup( &cfg );
    BTEZ_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    btez_init( &btez, &cfg );
    Delay_ms ( 100 );

    log_printf( &logger, "Configuring the module...\r\n" );
    config_mode = 1;

    btez_module_reset( &btez );
    btez_process( );
    btez_send_command( &btez, CMD_PING );
    btez_process( );
    btez_send_command( &btez, CMD_DEVICE_NAME );
    btez_process( );
    btez_send_command( &btez, CMD_SAVE );
    btez_process( );
    btez_send_command( &btez, CMD_GDN );
    btez_process( );

    config_mode = 0;
    log_printf( &logger, "The module has been configured.\r\n" );
    Delay_1sec( );
}

Application Task

Checks for the received data, reads it and replies with a certain message.


void application_task ( void )
{
    btez_process( );
} 

Note

We have used the Serial Bluetooth Terminal smartphone application for the test. A smartphone and the Click board must be paired in order to exchange messages with each other.

The full application code, and ready to use projects can be installed directly from compilers IDE(recommended) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.BtEz

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

mikromedia for PIC32 - Examples

0

Set of examples for mikromedia for PIC32.. Provided examples demonstrate working with mikromedia's various features and modules:

- Accelerometer
- MMC SD card
- MP3
- Serial Flash
- TFT
- Touch Panel
- USB

[Learn More]

Button POWER click

5

Button Power Click is a very interesting interactive gadget on a Click board. It is an integrated capacitive touch sensor display in the form of a button.

[Learn More]

Accel 22 Click

0

Accel 22 Click is a compact add-on board that contains an acceleration sensor. This board features the ADXL367, an ultra-low-power, high-performance three-axis accelerometer from Analog Devices. The ADXL367 allows selectable full-scale acceleration measurements in ranges of ±2g, ±4g, and ±8g in three axes, with a resolution of 0.25 mg/LSB on the ±2g range, alongside a configurable host interface that supports both SPI and I2C serial communication. This device combines a 3-axis MEMS accelerometer, a temperature sensor, and a 14-bit analog-to-digital converter (ADC) to synchronize an external analog signal conversion.

[Learn More]