TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (387 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (120 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140170 times)
  2. FAT32 Library (72626 times)
  3. Network Ethernet Library (57645 times)
  4. USB Device Library (47958 times)
  5. Network WiFi Library (43556 times)
  6. FT800 Library (42943 times)
  7. GSM click (30141 times)
  8. mikroSDK (28672 times)
  9. PID Library (27058 times)
  10. microSD click (26553 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Hz to V Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.12

mikroSDK Library: 2.0.0.0

Category: Measurements

Downloaded: 155 times

Not followed.

License: MIT license  

HZ to V Click is a device that can converts input frequency of the signal with virtually any wave shape to a DC voltage output, with a level proportional to the input frequency. It has a linear response, and by applying a signal with the frequency between 1kHz to 10kHz on its input, the Click board™ will generate a DC voltage, ranging from 0.33V to 3.3V.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Hz to V Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Hz to V Click" changes.

Do you want to report abuse regarding "Hz to V Click".

  • Example 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Hz to V Click

HZ to V Click is a device that can converts input frequency of the signal with virtually any wave shape to a DC voltage output, with a level proportional to the input frequency. It has a linear response, and by applying a signal with the frequency between 1kHz to 10kHz on its input, the Click board™ will generate a DC voltage, ranging from 0.33V to 3.3V.

hztov_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : PWM type

Software Support

We provide a library for the HzToV Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for HzToV Click driver.

Standard key functions :

  • Config Object Initialization function.

    void hztov_cfg_setup ( hztov_cfg_t *cfg );

  • Initialization function.

    HZTOV_RETVAL hztov_init ( hztov_t ctx, hztov_cfg_t cfg );

  • Set enable pin state.

    void hztov_set_enable ( hztov_t *ctx, uint8_t state );

Example key functions :

  • Read voltage function.

    float hztov_read_voltage ( hztov_t *ctx );

  • Changing the output voltage function.

    void hztov_set_input_frequency ( hztov_t *ctx, uint16_t freq );

Examples Description

This example demonstrates the use of Hz to V Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver and enables the Click board.


void application_init ( void )
{
    log_cfg_t log_cfg;
    hztov_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    hztov_cfg_setup( &cfg );
    HZTOV_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    hztov_init( &hztov, &cfg );

    hztov_set_enable ( &hztov, HZTOV_ENABLE );

    fin = HZTOV_MIN_FREQ;

    Delay_ms ( 100 );
}

Application Task

Sets the PWM frequency then reads the voltage from VO pin and logs all data on USB UART.


void application_task ( void )
{
    if ( fin > HZTOV_MAX_FREQ )
        fin = HZTOV_MIN_FREQ;
    hztov_set_input_frequency( &hztov, fin );
    Delay_ms ( 1000 );
    log_printf( &logger, "Frequency: %u Hz \r\n", fin );
    voltage = 0;
    for ( uint8_t cnt = 0; cnt < 100; cnt++ )
    {
        voltage += hztov_read_voltage( &hztov );
    }
    log_printf( &logger, "Voltage: %.2f V \r\n", voltage / 100.0 );
    log_printf( &logger, "-------------------\r\n" );

    fin += 1000;
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}  

Note

In order to set PWM frequency down to 1 kHz, the user will probably need to lower the main MCU clock frequency. The output voltage may vary, depending on the offset potentiometer setting on the Click.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.HzToV

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

WiFi NINA click

5

WiFi NINA click is a powerful standalone WiFi module, equipped with the state-of-the-art NINA-W132 module from u-blox, that can be easily configured with the u-blox s-center software, using AT commands.

[Learn More]

Brushless 11 Click

0

Brushless 11 Click is a compact add-on board that controls brushless DC motors with any MCU. This board features the A4931, a 3-phase brushless DC motor pre-driver from Allegro Microsystems. It drives six onboard N-channel power MOSFETs and supplies the motor with 8V up to 30V voltages. This pre-driver offers enable, direction, and brake inputs that can control motor functions and logic outputs for measuring motor rotation.

[Learn More]

Proximity 8 Click

0

Proximity 8 Click is a close-range proximity sensing Click board™, equipped with the VCNL36687S, a very accurate and power-efficient proximity sensor (PS) with VCSEL.

[Learn More]